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Preface

This report describes work accomplished between 1 April 1979 and 30 August

through project orders 79-063 and 80-U'4. The author has attempted to set down
some of the fundamental principles of thermoelasticity and apply them to the
determination of stresses by the absorption of high intensity laser radiation,
and to investigate the stresses in elastic plates generated by the thermal and
mechanical response to the absorbed energy.

The author wishes to acknowledge the cooperation of the Department of
Engineering Mechanics of the Ohio State University, where most of the work
presented herein was performed while the author was a visiting Professoxr of
Mechanics through the end of 1979,

The financial support of AFWL/PGV made the effort possible, and the sup-
port and encouragemenc of AFWAL personnel, especially Captain Peyerl, Dr.
William Laughlin and Dr. Ralph Rudder, contributed significantly to such
results as were obtained. Finaliy, the assistance of the secretarial team
at the School of Engineering, Air Force Institute of Technology, and of the
Instructional Media personnel in the preparation of graphics is greatly appre-

ciated.

Deter J. Torvik
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On the Generation of Stress and Deformation
in Elastic Solids by High Powered Lasers

Peter J. Torvik

1. INTRODUCTION
The absorption of some fraction of the energy in a high powered laser
beam at the surface of a solid generates stress and deformation through
several mechanisms. These may be broadly divided into two categories:
(1) where the stress arises through the thermal expansion of the target
material, and (2) where the stress in the target ariscs through a pressure

loading resulting from the thermal expansion of the medium (typically air).

The blow-off phenomenon, in which the stress is generated in the target by

the rapid expansion of vaporiged target material, may be regarded as a third

category or may be arbitrarily assigned to either of the first two.

o T

A second rationale for classifying the various regimes of stress gener-

I R

ation is furnished by the time scales of the problem. First, the time scale

T R T

introduced through mechanical inertia of the target must be cons:dered. 1If

X il e e

the heating rates are sufficiently low, it is evident that acceleration terms

in the target response can be neglected and a static siress analysis per-

R ol Rk

formed. Such problems may be termed thermal stress problems. On the other

hand, under very short heating times, significant temperature changes may

——
i, Ll U

occur before significant deformation has occurred. In such cases, the influ-
ence of target material inertia is to serve as a constraint thereby raicing

the levels of thermal stress. These may be labeled as thermal shock problems.

e .

The finite values of target conductivity introduce a second time scele 3

into the target response. If heating rates are very low, a state of thermal

equilibriuym will result with input energy being balanced by "losses" to the !

surrcunding media or through radial conductions away from the hLeated area.
— A ST
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These may be regarded as static thermal stress problems. For more rapid
heating rates, changes in temperature must be taken into account, but the
stress and deformation analysis may be performed by neglecting mechanicel
inertia and perforning a static stress and deformation analysis with time
regarded as a parameter. Such problems, where thermal inertia is considered
but mechanical inertia is not, will be termed quasi-static thermal stress
problems. In comparison, the thermal shock regime is seen to exist when both
mechanical inertia and thermal inertia wmust be considered. The fourth possi-
bility, that thermal inertia may be neglected but mechanical inertia must be
considered, occurs in a partially transparent poor conductor where absorption
of a pulse occurs in depth. The initial temperature profile and, hence, the
gredients and resulting stresses will form and be propagated quite indepen-
dently of the thermal diffusion process. For purposes of classification,
these may be called isothe{Eal shock problems and are of particular signifi-
cance in the absqgg&ion of x‘E:ys. However, this class would appear to be of
an academic interest only in targets essentially opaque to laser radiationm,
where absorption occurs at the surface and thermal stresses are generated
after a temperature change arises through conduction.

A further classification of thermal stress problems may be made into
problems of coupled and uncouvled thermoelasticity. In coupled thermoelas-
ticity, the temperature change resulting from a mechanical strain induced
adiabatically is taken into account. This effect is not to be expected to be
of significance i{n the presence of the very large temperature changes arising
from the absorption of intense laser radi:sion. A second deviation from clas-
sical therqulggticity arises {f non-Fourier solids are considered in which

the heat conduction law is modified so as to provide finite, rather than infi-

nite, velocities for the propagation of thermal disturbances. Solutions to




such nonclassical problewms should be reviewed in order to determine if this ef-
fect is of fmportance in the geueration of thermal stresses by laser heating.

Three of these four rsgimes of uncoupled thermoelasticity will be consid-
ered in the second section of this monograph wits the goals being as follows:
(1) to determine civcumitances under which significant thermal stresses will
be generated, and (2) to provide readily used formulae, charts and algorithms
for estimating the magnitude of thas thermal stress. Consideration of isother-
mal shock will be left for a later work.

In the third section, the generation of stress and deformation by mecha-
nisms involving a pressgz:\lqgg}ng will be considered with the emphasis again
being on determining circuﬁstances under which the stresses and deformations

are significant and on providing means of estimating the magnitude of the

effect.

In the fourth section, damage mechanisms will be treated. Of particular
interest is determining the likelihood that fluctuations in stress by what-
ever mechanism produced will be of such magnitude as to cause failure through
catastrophic (unstable) crack growth or eventual fracture through crack prop-
agation. In order to better assess the significance of stresses and deforma-
tions produced by laser heating, comparisons will be made with other damage

—

mechanisms, notably melt through and thermal softening.
™

.-.A.J_.k,:h.ﬁ;;_.w__“. L st aaceemees

Al I I TR

a




11. UNCOUPLED THERMOELASTICITY
The classification scheme introduced in the introduction was based on two
time scales. The first was the thermal time scale, which arises from the dif-
fusive nature of the heat conduction e?::sign. As will be seen in more detail
later, solutions to one-dimensional, linear heat conduction problems typically

show a dependence on time and spatial coordinate in the combination xt/x*,

where « i3 the thermal diffusivity, t is time and x the characteristic

coordinate. Thus, for times t long compared to a critical time

t, = LY/x (1)

where L is a chacacteristic dimension of the object, the temperature field
may be regarded as static. Conversely, for t < t.» significant changes in
the temperature field will occur and must be accounted for through solving
the diffusion equation for the temperature field subject to appropriate

thermal boundary conditions.

The second time scale of interest is the propagation time for elastic

disturbances

8 fep L/c,

where L is again a critical dimension of the heated object and Ce is an elas-

tic wave speed,of order 2-5 km/sec in an unbounded solid. Table I depicts
the result of this classification and sets down the terminology to be used

in this section.
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TABLE 1

Classification of Unccupled Thermoelastic Problems

Thermal Inertia Mechanical Inertia
t < L*/x t > L¥/x t < L/C, t >L/C,
Static Thermal Stress X X
3
: Quasi Static Thermal Stress X X
Isothermal Shock X X
y
Thermal Shock X X
Jor an isotropic Fourier solid, the components of the heat flux vector,

q s are related to the spatial gradients of the temperature field through

aT

and conservation of energy leads to
o€ =

oij;ij - a9 3)

where k is the thermal couductivity, p is the density, € is the internal ener-

8y, oij are the stresses, and cij the strains. For an elastic solid

pTn = =q; (4)




where the entropy n is given by

n=-3’- ¢))

and

¢ = C(eij, T) - n(ci y T (6)

i

is the free energy. Frem (3), (4) and (6), Equation (5) follows, and that
= p =% (7)

The specific heat at constant volume, Cv, is defined from Equation (3), with

; = 0, or

1)

pC. T = o€ = -9 4 (8)

Equation (4) may be written as

mor [ 2 L 3n;
-9,y = °T 2, €y *ar T (9)
.1 i
P aty o
= pT . € - T (10)
'aeijaT i} a7 ]
substituting Equation (7) and noting from (8) and (10) that
al
pCv = «pT 3¥¥ (11)
we arrive at
w,, .,
94 = T(~ —ﬁ-‘-):ij + pC T (12)
6




For an elastic material undergoing temperature change

o + 2ue,, = (32 + 2uW)8, a (T =T ) (13)
i}’ T o

15 = 5% 1] j

where A,u are the Lame constants, GT is the coefficient of thermal expansion,

and T° is the uniform temperature in the reference (unstrained) state. Sub-

stituting (13) and (2) into (12) leads to

3T aT . )
axiaxi = pCv 5+ T(3Ir + 2u)u,rekk (14)

Linearization (by fixing T at a consitant value) lzads te the coupled theory
of thermoelasticity. Neglecting the last term leads to the familiar governing

differential equation of lincar heat conduction

corr = 2 (15)

-

where the thermal diffusivity, x, is defined by

K = — (L6)

This development is a summary of the more comprehensive treatment given in
standard sources, such as Boley and Weinerl. Numerous solutions to Equa-

tion (15) for various boundary conditions are given in the standard work on
heat conduction in solidsz. Solutions of particular interest to laser heating

problems have also been identified3.

1Boley, B. A. and Weiner, J. H., Theory of Thermal Stresses, John Wiley,
New York, 1960,

2Cnrslaw, d. S. and Jaeger, J. C., Conduction of Heat in Solids, Oxford °
University Press, 1959.

3Torv1k, P. J., Thermal Response Calculations and Their Role in the
Design of Experiments, AFIT TR 73-6, 1973.

7
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The strains cij are related to displacements, Ui, through !
au U
L1, _1
; €13 7 2 (axj * axi) 7

in the infinitesimal theory. Conservation of linear momentum requires that

where the strasses o,, are related to strains through Equation (13) and,

ij
hence, to displacements. Substitution of (13) and (17) into (18) produces

au Rt 3ty
3 k i 3T i
axi axk axjaxj T 3x1 ot

The problem of uncoupled thermoelasticity is the solution of Equation (19)

e L et S R R T B —"

where the temperature gradients are determined from the solution of (15)

subject to appropriate boundary conditions.

g
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A. Static Thermal Stresses

Thermal stress arising from a static temperature field will not be en-
countered fregquently witk high levels of incident intensity, but one partic-
ular case is of such significance as to merit consideration.

Consider a flat sheet of raickness 1 and large lateral dimension. Energy
is absorbed at vate Ia per unit¢ area, per unit time, uniformly over a circle
of radius a. We assume that the tcmperature under the beam, Tl’ is essen~
tially uniform and steady. An energy balance on the disk of thickness 1 and

radius a immediately under the beam leads to

< ar
Ianaa = 2(ﬂa’)[h'1'1 + eal(T + T - To‘}] - 2ralk o l (1)

The first term on the right represents lossss to the surroundings at tempera-
ture To’ and the secoud, losses frowm tlie neated disk due to radial conduction.

For simplicity, the loss term may be approximated by

h*T. = (h + eoT?) T1 (2)

1
where

™ = [('ro + T 'r°=][2'ro + 'rl] 3

'r1 being the maximum temperature reached relative ¢> the surroundings, ¢ being

the emissivity, o being the Stefan-Boltzman constant, and T, being the final

1
temperature of the heated disk measured with respect to the temperature of the
surroundings.

The approximation of a uniform temperature under the heated spot is ap-

propriate from two points of view. First, the precise details of the temper-

. e R,
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ature distribution are dependent on local properties of the beam, generully
not well characterized. Secondly, local surface melting under the beam will
serve to ''smear" the temperature into a uniform value, namely, the melting
temperature. It is presumed in Equation (1) that the thermal inertia is

negligible, i.e.

pcpua'li << I‘ta’ (4)

Outside the heated region, r > a, we have

KVIT - 2h*T/1 = pCp'i' (5)

vwith boundary conditions T(r) = T» T(e) = 0, and the gradient at r = a given

by Equation (1). Again neglecting the thermal inertia and defining a Biot

number
s - B (6)
we find
= AK (/28 /1) (M
where
A= T (K (/78 a/1)7! (8)

Here Ko is the modified Bessel function of the second kind and order zero. 1If

Tl_g T., the melting temperature, we see from Equation (1) that

K (/26 a/l)
1, < 2h*T + 2= /28 -—-7,r-7f- 9

10




We may expect losses from the heated area to the surroundings (the first term
on the right hand side) to be negligible compared to losses due to radial con-

duction (the second term). For small arguments,

: Ko(z) ~ =lnz (10a) ;
: K (2) ~ 1/z (10b)
Thus
Iaa’ 1 — .
T, ~ In (——) when v28 = << 1 (1)
1 2kl a’28 1

and the temperature for small r decays logarithmically.

From the temperature distribution

T=T r <a (12a)

K (/28 r/1)
T=T, 2, r>a (12b)
Ko(lza a/l) .

with T, given by (9) or (11), as appropriate, we may compute thermal stresses
using results given previously.1
For any axially symmetric temperature distribution T(r), the stresses and

displacements are:

SR - sy

—aE r ECl ECZ
o ., = -;r-fc Trdr + i~ -~ ?T:GT;T (13) l
T EC EC
aF 1 2
Ogg = f ]c Trdr - aBT + T * (ve! (14)

1
Boley, B. A. and Weiner, J. H., Theory of Thermal Stresses, John Wiley,
New York, 1960, pp 288-290.




r c
U = Sli!l! l Trdr + C.r + 2
r r e 1 o

for arbitrary C. Here we require:
in Region I: (r < a) that Ur remain bounded.
in Region I7: r > a that O = 0 as r + 00.

on r = a that the normal traction and displacements of Region I match

(15)

those of Region II. If we neglect the change ir modulus resulting from the

temperature increase, for r < a:

= -E0T1/2

Q
[

rr

Oee = -E°T1/2
Ur = (l+v)aT1r/2
for r > a:
2
/] - —E Ir rTd EI—:;—
rr ¥ a -2
oF [T ET,aa?
99 = FT I‘ rTdr + 5. - EaT
r aT. a?
U = a(lsv) I rTdr : (l+v)
r r 2r

For the temperature field given by Equations (7) and (8), for r > a

r T 1 .
I. rTdr = Ko(pr) . ;T LpaKl(pa) - erL(pr)]

where

/28/1

-
m

12
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(17)

(18)

(19)
(20)

(21)

(22)

(23)
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and T, is determined from the incident flux through Equation (9). Hence

ET K - prk ) (
aET, [pa 1(pa) pr l(pr]+ ;).}

% = T (pr)? { Ko(pa) (24)
o = oET, {[lel(pa) - erl(pt)] . (pa)* (pr)? EBfE:l) (25)
06  (pr)? K (pa) 2 Ko(pa)
We note 0. to be everywhere compressive but that %an tecomes tensile for
r > r* where
paKo(pa)
pa {Kl(pa) + -———5-———} = pr* {Kl(pt*) + pr*Ko(pr*)} (26)
For laxze valu2s of pa, usymplotic cxpansions may te used to give:
- ~prx
1 pa)}2 Pt o (pen)¥/? 7P (27

Approximate solutions then give the following results

pa r*/a
5 1.2
10 1.08
20 1.04

From these few values, we see that the ratio r*/a does indeed approach
unity for large pa, as expected. Thus, the region of large compressive cir-
cumferential stress becomes small, the radius at which tensile stresses de-
velop is reduced, and tke magnitude of those tensile stresses increases as pa
is increased. Recalling that a large pa corresponds to a poor conductor, and
that stresses decay as r increases, we see that large tensile circumferential

stresses are a peculiar problem to poor thermal conductors.

13




One aspect of these results is somewhat astonishing. We note from
Equations (16) and (17) tha: the stresses under the heated region are inde-

pendent of the value of pa and hence of the quantity:

T b g on e |

aktgl: (28)

i.e., *he thermal conductivity outside the heated region does not affect

stresses within. Thus, in good conductors, such as ductile metals, large
maximum shear stresses will be found under the heated region, but tensile

stresses outside will be small., Thus failure will be localized to the heated

region. For poor conductors, however, large tensile stresses will also be
found outside the heated region, thus introducing the possibility of cracking,
or crack growth, in the portions of a target .ot heated directly.

For computational purposes, let us define

Fl(pa) = paKl(pn) + $2§L:K (pa) (29)
o
Fz(pr) = erl(pr) + (pr)'Ko(pr) (30) i

Then Equation (’'§) mey be rewrittan

%90 {F,(pa) - Fz(pr)} E

. (2
EaT, = (pa)'K_(pe) * (3D

Figure 1 depicts graphi:slly the functions Fl’ FZ for a range of arguments
and shows tl at small pa does not give rise to small pr. Rather, we note that
tle radius, r*, at which the circumferential stress becomes tensile remains
large. From Equation (31) tensile stresses develop for Fl(pa) = Fz(pr*).

From the graph we may deduce the following

14
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Gl

e o +
pa pz* r*/a
.01 1.2 120
.1 1.2 12
.5 1.4 7
1.0 1,75 1.75
2.0 2.7 1.35
5.0 5.7 ~1,14

Because of the decay of stress with r* (Equation (31)), the tensile stress
which eventually develops in a good conductor will be negligible. Thus ten-
sile stresses of significance, i.e. near to the heated region, will develop
only for poor conductors. (It also shows the asymptotic expansiocns used
{Equation (27)) become applicable for pa greater than 5).

Hand computations for a few specifi: instances demonstrate this phe-

nomenon.

Example 1. For a ceramic material 1/4 cm thick in turbulent flow, under
a beam of 10 cm diameter, taking h = 10°3 watt/cm‘oc and k = ~.01 Joule/
sec cm °C, we find pa * 6. In this case, r*/a = 1.l and stresses are found

as follows from Figure 1 and Equation (31).

x/a pr %ge/ET,

~0
«093
« 145
<257
. 256
231
+169

-]
.

OO N~

- IR

Example 2. A disk of alumina (A1203) 1/2 cm thick in the same turbulent flow
(h = 10-'3 watt/cn'oc) with k ~ .2 Joule/sec cm°C and a 6 cm diameter beam

leads to pa = .4. 1In this case, tensile stresses develop at pr* = 1.3, A

few stresses are

16
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£
i
:
13
13

., /EaT

x/a T L N—
~3 103 ~0
3.5 1.4 .0161
5 2.0 «0507
6.25 2.5 .0547
7.5 3.0 0519
9.0 3.6 .045

Example 3. A disk of aluminum (k = 2 Joule/sec cm °C), otherwise identical to
the preceding example leads to pa ~ .1. In this case, tensile stresses de-

velop for pr* = 1.2 or r/a = 12. Some stresses are

/s pr 04/ EQT
12 1.2 ~0
14 1.4 .0135
20 2.0 .0267
22 2.2 +0276
25 2.5 .0275
30 3.0 +0257
50 5.0 .olaa

For very good conductors k + 00 and pa + 0. In this case pr* + 1.2 and

xr* + 00 as k + 00. Since Lim

a0 Fl(pa) + 1, we may develop a simple bound

on the maximum tensile stress possible in a good conductor. Setting Ko(pa) =

-ln(pa) and
F (pa) =1

in Equation (31), and differentiating with respect to r, we find that the
maximum tensile stress always occurs at pr = 2.32. Hence, a bound on the

tensile stress, valid for pa < .3, is

(1] 0.0687
EaT ln(pa) (32)

17
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Thus the tensile stress always develops but at increasingly large (r/a =

2.32/pa) distances from the heated area.

: 1t is easy to show that for large pa (the perfect insulator) the maximum

f . tensile stress occurs just outside the heated area and is of magnitude
i

1 %0 1

5 EaT, ~ 2

These computed values, together with the stress distribution for a per-
fect insulator (k = 0) are sketched in Figure 2. The decrease in the maximum
tensile stress for decreasing pa (increasing conductivity) is evident. The

! bound (Equation (32)) is given &s the dashed line and represents the envelope

enclosing all peaks obtained for pa < 0.3.

18
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B. Quasi-Stazic Thermal Stresses

l. Local Heating of Thin Sheets
As a first example of a quasi-static thermal stress distribution, let us
consider the process whereby the long-time stress distribution given in the
preceding section is developed. We first consider the special case of the
poor conductor, for which the temperature outside of the heated area remains
at the ambient temperature, but assume a uniform temperature Tl(t) for r < a.

These assumptions are appropriate for heating times short compared to radial

diffusion times,

e, << tg = a?/k (1)

but long compared to the thermal diffusion time through a thin sheet

<< 12
t, 1*/k (2)
In this case
Ia
T, = Tl(t) = ;E;T t (3

for a beam of uniform absorbed intensity Ia'

In consequence of this temperature distribution, thermal expansion occurs
~ver o0 < r < a which is partially restrained by the surrounding material which
15 still (since we are ignoring thermal conduction) at T = To. Thus, the

stress tl!eld which results is that resulting from forcing a disk of radius

a' = a(l + uTl) (4)
into a hole of radius a in a sheet of the same thickness. The displacements

20
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in the inner and outer regions are the well known radial distributions of the

Lame problem,

Ar + B/r (5a)

[
)

(=]
]

Cr + D/r (5b)

matching normal stress on r = a and requiring continuity

a' + Uyj=a+U (6)
o
: leads to C = B = 0 and
4 el + v
; D = a%a ( 3 ) Tl (7)
i
3 1 -
‘ A= -a( 2 )Tl (8)
!
3 From which we find %
3 ]
1 i
3 EuT1
’ e T TT (%)
i
EaT
1 ,a?
crro -T2 (;T) (10)

In addition to these radial stresses, circumferential stresses also develop : i

and are of magnitude

Ech
Ogg =~ =3 (11)
i
EaT M
g = —5 (21 (12)
[}
21 i
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for the assumed state of plane stress. It is these *ensile stresses outside

of the heated region which we may expect to have an effect on crack propaga-

tion. The maximum value is

)

In a ductile material, some yielding is to be expected when the maximum shear
stress exceeds a critical value, 1In the heated region,

EaT1
“max, T % (14)

everywhere, and outside the heated region

max 2 (15)
()

at the edge of the heated zone.

We may note a fracture criterion for a brittle material which is a poor
thermal conductor. Under these conditions, & uniform deposition of energy Q

over a circle of radius a will lead to fracture if

chit = 2'cr1t Ex (16)

and O rit is the tensile stress producing fracture.

We may take thermal softening into account. If the modulvs of ithe heated

material is

E(T,) = E

D= E (17)

22




then the matching of stresses and displacements at r = a leads to

and stresses

a®, .
°ae° =Tje (39) + [

o

E
rl + 1-v —2]
- 1l + v E1

e

E
1 1 +v
[1 + E: (T_:—;)]

ale
~
A
™),
<
+
—
+
<
—

1 o
(a‘) . [1 =y, L+ v
i T LT E
1 o
1 =wv 1 + v
=t e
1 0

(

(

i8a)

18b)

(19)

(20)

(21)

(22)

The maximum tensile stress again occurs just outside the heated region and is

%0
max

E

o“Tl
E

[(1+w)+52Q=-W]

1

(23)

If the temperature is such that the modulus is reduced by 50%, and v = 1/3,

then the maximum tensile stress can he seen to be 75% of the value observed

without the thermal softening effect.

The maximum shear stresses are also

readily seen to be reduced by the thermal softening effect in the same ratio

T
max softened _

1max nominal

2
E
[(L+v) + Eg (1 -v)]
1

23
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Thus, while thermal softening relieves some of the stresses, it does not

e r

eliminate chem completely.

As a demonstration of the manner in which thermal softening within the

¢ heated region curtails the development of tensile stresses outside, let us

; consider a hypothetical material, for which

-

E(T) = E_cos(3 T—:') (25)

Heating is presumed to occur in accord with Equation (3), and tensile stresses

; as given by Equation (22) to develop.

We find
%6
| 8% L1+ v) + (1= V) sec (327 (26)
- n m

where
€, = pcpl'rn/Ia (27)

is the time required to produce meeting. This result is depicted graphically

as Figure 3.

Let us now consider the occurrence of yielding in the heated region of

an elastic, perfectly plastic material of negligible thermal conductivity,
recognizing that these two assumptions are in large part mutually exclusive,
for those materials which yield plastically, e.g. metals, tend to be good
thermal conductors. As is well known, ductile metals have yield points which

are strongly temperature dependent. Thue, if the process described in the

preceding progirssses to some temperature such that
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Orr 00 2 - °y(T1) (28)

further heating will not increase the stresses for either r < a or r > a.
Rather, further heating will reduce the yield points and hence the stresses.
1f heating is stopped at some temperature Tg ('1‘1 < Tf < Tm), the stress dis-

tribution at that time will be

Q
]
Q
L}
Q
"

- = =0 (T 29)
rr, eei rr 0000 oy( f) (

if thermal softening and heat conduction for r > a is neglected. We now sup-
pose that the entire plate returns to the ambient temperature, and a process

of elastic recovery occurs. The stresses which develop during this process

are readily seen to be
= 0g = Ea(T.)/2 (30)

5, . =-o'“ =Fa(+'l‘f)/2}a’/r’) (31)
o

superposing these onto the stresses at the end of the heating period gives the

final state of stress inside r = a as

T
4
on_i =0g.q = Ea 5 - oy(Tf) (32)
i
and for r = a in the exterior
Te
°rr° = -ooeo = Ra 7 - °y(Tf) (33)

Thus, it is seen that large residual tensile stresses can develop. If

26
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the elastic perfectly plastic material is heated to the melting point, and the

melt remains in place, these final stresses can be as large as

Omax = EonIZ (34)

which may be of the order of the yield stress at room temperature. Moreover,
these large tensile residual stresses may produce fracture. Thus, a single
large pulse, not quite capable of producing melt through, may give rise to
mechanical failure. The time history of the process is depicted graphically
in Figure 4. The process occurs as follows. During O < t < t» heating
occurs, (OA) and elastic stresses equal to oy(Tl) develop. From t) <t <ty
heating continues, but the heated disk deforms plastically (AB) and the
stresses fall to oy(Tz). For t > tf, cooling takes place, and the material
loads elastically (BC) to the final stress, given by Equation (33). 1In a
work hardening material, the stress at te will be greater and the final value,
Oe» reduced.

This damage mechanism appears to be of such significance as to merit
further study. In particular, the degree to which radial conduction away
from the heated region and strain hardening alleviates the stresses should
be examined.

Proceeding in the same manner as in Section A, it can be shown that con-
duction for r > a during heating does not affect the state of residual stress
after cesssation of heating and the establishment of thermal equilibrium.

The influence of strain hardening may be developed as follows. We assume

the stress strain curve for the material is

¢ = Ee for o < ay (35a)
6 =0 + BE(e ~ ¢ /JE) for 0 > ¢ (35b)
y y y
27
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where °y is taken to be a function of temperature but E and 8 are not. This
stress-strain curve is depicted graphically as Figure 5.
Let us again suppose the region r < a is again raised to a temperature

T1 and that yield initiates uniformly on r < a according to a maximum shear

criterion. We then assume that heating continues to a temperature T2 > T1
with the final strains being
o ua)
t Eer = Boo = "2 (36)
Hence
= - Ua)
°oei = u“i = oy('rz)(l - 8) + BE " (37)

These radial stresses and displacements must match (at r = a) those of the

exterior region, o = -CAE/[(1+v)r‘] and U_ = C,/r at r = a. Hence
+g_(T,)(1 ~ 8)a?
6, = —- 2 - (38)
B{~8 + T:;}
and the stresses in r < a become
, . ) :t_ry('l‘z)(l - 8) (39) ‘ .
rr, 00, [1 ~ (i + v)8) g
while for r > a .
!
-9 (T )(l - ﬂ) 2 4
- y 2 a
°rr° T8+ W] XY (40a)
a (T )(1 bl ﬂ) 2
y 2 a
°eeo "Ti=s(l+ W]t (40b)
29
R




*1e1II®N
Suyuapie-ujer3is (ed>333yzodAy 1oy dyysuoijzelay uyeIIG-$8213¢ °¢ 2an8y3

NivilS FISN3L - 3

30

SSUIS isNaL - o




Cooling to the ambient temperature again leads to the superposition of Lame

stresses, and the final residual stress state is:

) Eu(Tz) o’(Tz)(l - 8)

orri = 0001 T2 Tl - (1 + v)B] (41a)
BaT ¢ (T, )(1 - 8) :
= - 2y 2 a

°rro = "’eeo == 1=+ we] =f (41b)

We conclude that strain hardening will reduce the magnitude of the resid-
ual stresses appreciably only if the final temperature, T2, is only slightly
above the value at which yielding occurred. For example, if the relationship

between yield stress is taken to be

¢ =0 (1l - To
y Yo 1200 °C

) (42)

which, at least qualitatively, describes data availablelfor several materials,

v = % (43)
1
8=3 (44)
the residual stress without strain hardening is
EaT T
og = —2 - o, (1 - —%—) (45)
o 1200 C

1Holmes, B. S., and Desmond, T. P., Thermal Mechanical Damage Study,
Monthly Status Report #8, Contract # F29601-78-C-0041, SRI International,
May, 1979.
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if strain hardening is included.
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2, Uniform Heating of Plates

In the preceeding section, thermal stresses resulting
from radial variations in temperature were considered, while a
uniform temperature was assumed through the thickness. We turn
now to the other limiting case ~ that of variations in temperatures
through the thickness of a plate, with no temperature variations
in the transverse direction, as would be encountered if energy is
atsorbed at a uniform rate, I,, over a sufficiently large area.

a, The Free Plate.

We first assume tke plate to be free, that is, that
there are no boundary constraints. For convenience, we take the
plate to be rectangular of thickness h, bounded by planes Z=0 and
Z=h,

Ignoring mechanical inertia, we see that a state of
plane stress will result, i.e, Ogp = 9. Th:.ogh considerations of
symmetry, we see also that oxy = 0 and that Ox ™ cyy = g(Z). The

stress strain relationships then give

Eexx = (1-v) 0(Z) + B¢« T = EF(Z) ()

Eeyy = (1-v) o0(Z) + Ea T = EF(Z) (2)

and inplane displacements may be obtained through integration of
the strains. The result is of the form:
Uy = x F(Z) + h(Z, y) (3)
Uy = y F(2) + g(z, %) (4)

The thickness strain, and displacement are (respectively)

2

€22 =" -~ 0(Z) + a T = G(2Z) (5)
U, = /G(2)dZ + k(x, y) (6)

Shear stresses are then seen to be

d

o, =¥ {x F'(2) + 3% + %§} €]
? 9k
oyz = u {y F'(2) + f% + 3;] (8)
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Since Oex ™ ayy = g(Z) and °xy = 0, the equilibrivm equations

require that

90 2
xZ 0 or XF"(2) + h 0 (9)
32 322

30, a2g

—I2 2 0 or yF"(2) + — = 0 (10)
¥4 ax2

Since h i1s independent of x, and g of y, we see that
F' = const = C;. Hence

F(Z) = C; Z + C, (11)

and wve arrive at a stress disbribution
E .
a(2) Ox = Yyy I-v {cC; Z+cCy -~ aT} (12)

where temperature, T, is measured with respect to an ambient,
unstressed, state.

If we require the plate edges to be free, the moment per
unit length mus:c vanish, 1i.e.,

My = 0 = I: o(Z - h/2) dz = 0 (13)
and the in-plane force per unit length must also vanish, i.e.,
Fp = /P odz = 0 (14)
o
These give
2a .h
Cy = =— [ (2h - 3Z2) TdZ (15a)
n? °
¢y = 82 /P (27 _ h) T4z (15b)
nd °

From which we may deduce the final expression for the thermal stress

in a free plate, uniformly heated over one entire face, tc Le

Ea 62 .,h 2 h .
9 x ayy 1'“’[h3 fo (2Z-h) TdZ + 2 Io (2h - 3Z) TdzZ - i] (16)

It is readily shown that a uniform or linear temperature produces

no stress, even if the coefficients are time dependent, as in

T = A(t)Z 4+ B(t) (17)
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For a plate absorbing energy at & rate I, per unit area,
per unit time, on the plane Z = h, with no losses on the f::ze

Z = 0, the temperature may be shown to be

It Ih . 2I h - 2.2 2
T(z,t) = + =2~ (22/n2-1/3) - ¥ (-1) e~ *mimit/h cos(!-‘-"—z—> (18) .
pCph 2k n=1l kn?n? h

For large values of time, the series makes negligible contributions, -

;
L
E»
4
i
;
3

and the temperuture may be satisfactorily approximated1 by the first
two terms. Of these, the first is recognized as leading to no stress.
Thus, for long times, the stresses are generated by the quadratic
term in the temperature, and are

Ea I_h |2 22 1

Opy ™ Opy = ——— == — - = (19)
YY  2(1-wkx |[h  hn2 6

The maximum value occurs at the front and rear faces, and 1is a

compressive stress of magnitude

Lo Lactci 1o

Ea Iah
0 = - ——— (20)
12(1-v)k

The maximum tensile stress occurs at the mid-plane, and is of

magnitude

Ea Iah
c = —_— (21)
24(1-v)k
These, we note, are static stresses even though the generating
temperature (Equation 18) increases linearly, with time, at long

times.

————

Torvik, P.J., Thermal Response Calculations and Their Role in the
Design of Experiments, AFIT-TR-73-6. Also in Proceedings of

1973 DOD Laser Effects and Hardening CTonference, Monterey CA,

Oct 1973.
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At short times, stresses generat2d by the series terms must also be

included

Ea I, h n
8 ‘z 5= ~xkntxte/h? anz f22 _ \26 . 1 -xn2n2t/n2
crans © PTeen 2 2 e cos b 1 “koid - e 22

This vesult, with some notational changes, ig to be found in Boley1
and has been shown to be negligible for slowly varying heat inputs.

i
E

In heat additions which are as step functions in time, as are of

interest here, these terms are of significance for short times.

Some numerical results, obtained by Garrison?, are presented
in Figures 6 and 7. 1In figure 6 the distribution of stress through
the thickness is shown for several instants of time. The general
increase with time of the peak tensile stress and the movement of

the place of cccurence to the center of the plate can be seen. At
kt/h? > 1, the stresses are indistinguishable from the static value,
] The compressive stress at the heated surface first increased and

¢ then decreased, These temporal changes are more clearly seen in
Pigure 7. The peak compressive stress is seen to reach a value

in a finite plate some 30X greater than the asymptotic value for

long times, as given by Equation 19,
b, The Influence of Constraints,

This simple example of one dimensional temperature variation
in a plate presents an opportunity to investigate the influence of
mechanical constants at the bcocundary on the stress distribution.

pr-

Computing the solutions for the displacement (using the symmetry of

x and y axes), we find

[RPIESPTINLEL - gty

Ugx = C; x Z + Cox + D (23s)
Uy = Cy yZ 4+ Cry+D (23b)

C b
Uy = I: {S%é%l aT = %§U (C,2+C,)} 4z - El (x2+ y2) + B (23c) F

1Boley and Wiener, p 285, ‘ ;

2Garrison, Jan N., Thermal Stresses as a Laser Heating Damage

Mechanism, AFIT Thesis, GAE/MC/75-4, November 1975,
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As our example, we consider a square plate with side length
a, bounded by x = 0, y = 0, x = a, y = a, Four possible boundary
conditions are possible:
I The edges free.
IT The edges constrained to prevent rotation, but in-plane
expansions freely allowed.
IIT The edges constrained against in-plane displacement at

the mid-plane, but rotations allowed.

IV The edges constrained against both displacement and
rotations.
The stresses for case I are those of Equation 16.
If no rotations are allowed, inspection of the displacements

reveal that C; = 0, Ensuring the absence of in-plane forces

requires
/P sdaz = 0 (24)
[¢]

or
Cy = % J Tdz (24)

hence the stresses are, for case II,

- - Eg (1 (h -
Sex = Oyy = 105 (§ /o TdZ - T (25)

If now we require that in-pglane displacements vanish, for

Z = h/2, on the boundary, we se: tvom equation 23 that
Co = -~ h/2 (26)

Vanishing of edge moument reguires th: ¢

h Mz - w6 (@) az = 0 (13)
or

12¢ ‘L ,h h
L C - s \2 /, T4z - S 2Td2) (27a)
c, = & (% /? raz - sP z1a2) (27b)

h2 (] o

Finally, for case III.
39
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The fourth case arises for Uy = Uy = 0 for all x, y, t, or

= -5-9— -
Txx oyy 1=-v (-1 ,

In order to assess the influence of edge constraints on the stresses,
let us put the temperature distribution for long times (Equations 18)
into the form ‘

R i Lol S - oA

+ Ih
T(Z,t) = —%— T+ % (z2/,2 - 1/3}] (29)

where

is the dimensionless time previously introduced
3 Then the stresses are found to be, in each case:

I. For no edge constraints:

I h
- - Ba_ _s_) z_ _ 22
Txx 0yy l-v ( k {Zh 212 - 1/1%} (313

I1. For edges constrained to prohibit rotation only (expansion

2
i)
2h?

I1II. For edges constrained to prohibit expansion only (rotation
permitted)

permitted)

¢ =g = Ea fit {- v - 2z, 1/2 z/h - 1/12} (33)
xx vy l-v\ k 2h2

IV. PFor edges constrained to prohibit both rotation and displaée-

mes:
I nh 2
- - B¢_(_a ) 1 _z°
O ex cyy i-v ( * {- v + 3 . } (34)
40

. _Ea_ 6 (h ,h _ b _ 12z (h ,h h
Ox = Oyy = Iy {;;(2 s raz - sPzraz) = (3 /" raz - /P z14z) - TIC28)
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In all cases the maximum stress is compressive, and occurs at
the heated face and is independent of plate size. We note that
it 1s the in-plane constraints rather than the bending constraint
which generates the large stresses at long times. At shorter times
however, T v .25 or less, we note that greater stresses are
generated through the bending constraint. Although these simple
expressions are not valid for values of T much smaller than this
value, the same generalization is valid for very small rt.

At very short times, T < < 1, we may regard the plate as

being of infinite thickness. In this case,

21
T (2,t) = <= Ykt ierfe (2/_) (35)
Kt

where Z is now measured into the glab, with Z = 0 being the heated
face. Recognizing that the unheated (and therefore unexpanded)
mass of thick plate serves as a constraint on the heated surface

layer, the stresses are (from case IV)

=3

Ea
O x oyy - 1 (36)

e
<

The maximum stress is again compressive, at the surface, and given
by:
21, fkt

Ea ‘-a [kt
oxx (ost) - oyy (o:t) - - 1-v k 'ﬂ' (37)

The dashed line of Figure 6 shows the stress at the surface
computed from Equation 37. These values, which are analogous to
complete constraint, are slightly greater, at small times than the
numerical results obtained for the free plate. The stresses in

the thick slab decay rapidly with depth according to

Ea 21 - Z
6 =g w2 __8 ALt ierfe (38)
xx ¥y 1wk 2/xt

with values at times comparable to .xt/h2 = ,0057. Computed
regsults have been added (in dashed lines) to Figure 7 for purposes
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of comparison with the results obtained for the plate of finite
thickness. The rapid decay from the surface is evident. From

a talle of values of the ierfc function, it may be deduced that
the stresses fall to 10X of the surface value at a Jdepth 2

~ 2/kt, and to 1% of the surface value at a depth of Z ~ 3/«t.




C. Thermal Shock

As a firct example of a problem wherein the effects of thermal inertia,

i as well as mechanical inertia, are significant, we consider a thin elastic :

plate, circular in planform, and supported at the outer periphery (clsmped,
or simply supported). A uniform energy flux Ia is absorbed over the entire
surface, commencing at t = O. Thus we assume a through-the-thickness temp-
erature variation only, which generates a thermal moment. The response of
the plate to the uniform, but time varying moment is desired.

We let w(r,t) be the deflection of the mid plane of a plate bounded

by <«h/2 < z < h, Then, using elementary plate theory

aw _ .
u,=-z97 § u = 0 and (1)
itw z W
= - . = e on @ 2
€rr 23 7 Coe r ar (2)

Hence, for a linear elastic material at temperature T above the ambient

(unstressed) temperature

_ _=E aw vz 3w E

Orr T INT [23_1‘7"'1"_'5} “1= T (3a)
_ E zZ W atw E

%0 = T T-T [ TR T ] I~ °T (3b)

We define total moments (per unit length) and a thermal moment, according to

=+
M

Ih/z

zorrdz (4a)
~h/2

/
. [h 2

zaeedz (4b)

=h/2

h/2 |
I zEaTdz (4c) ‘

~h/2

My =
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This produces

r wrrar T T (5a)
) 1l aw Nw "l‘
Noa D{;—r+v ?:F“"l-_» (sb)
' where
: Ehl
D= Y (8)

An obvious division of the total moments into mechanical and thermal compo-
nents can be made. Since no elongation of fibers on the neutral plane of

symmetry is allowed in eleaehtazy theory, in-plane stresses will also develop.

From the sign conventions and free body diagrams of Figure 8 we deduce

that equilibrium of moments about the 6 axis requires that:

] INr aNe

J (ur M dr)(r + dr)de - urrde - (Me * =50 rde)drde - Qrdrde = 0 (7)
or

; r-?%:‘-_+(lr-l°)-or=o (8)

Summing vertical forces gives (from Fig 1d)

r e
I ph2aw(r,t)rdr= 2xrQ (9)

o

Thus one form of the governing equation for the plate is:
anr

M- Ny 1 (*
i (——?-—-) - % I shr¥(r,t)dr = 0 (10)

o

We note, from 5, that

_ d 1 aw
N, =Ny = - D(A—v)r 3= (3 337) (11)
We note differentiation produces )
I !
I I phr¥(r,t)dr = phr¥(r,t) (12)
o
44
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and that

Viw = %g; (r %) (13)

for this axisysmetric problem. Differentiating Equation (3a) once gives

1 | ?
r -,—: = = Dp -:; (3%¢w/ar? + v/r m/ar) - 1—_5; "a? (14)

Combining with 11, Equation (10) becomes:

r
nr{-:; Viw)} + I phr#(r,t)dr + r -:—l; (;T:;) =0 (15)
0

which, for static problems, is convenient to integrate. In dynamic probleas,
we differentiate all tearms and divide by r to obtain the differential equa-

tion“of the vibrating plate

Dv'w+ph;i+li—vv‘l,r=0 (16)

which is to be solved, subject to initial conditions and boundary conditions.
If the response to a simultaneous pressure and thermal loading is desired, a
prescribed pressure may be added to the right hand side of 16. Such problems

will be addressed in a later chapter.

We consider first the simply supported plate. The boundary conditions

onr=aare

M (a,t) =0 (17a)
w(a,t) =0 (17b)
with initial conditions
w(r,o0) = w(r,0) = 0 {18)
The associated homogeneous problem
L . =
DV w, + oth =0 (19)
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a’wH v aw,
Mr=-51—_;+;-5-r—=0 on r=a (20a)
Wy =0 on r=a (20b) )
wH(r,o) = f(r) (21a) .
Wy (rs0) = g(r) (21b)
has the solution
Wy = nz1 {An sin wnt + B cos mnt}Rn(r) (22)
where the eigenfunctions Rn(r) are
J,(pa)

R (r) =J (pr) - I (p.r) (23)

Io p,a) o'n

with
ana ) Jl(pna) . Il(pna) (20)
1-v = J (p a) I,(pa)

The coefficients A, B are given by

Ao Fa g(r)
L %— I r I Rn(r)dr (25)
B_ n, l_f(r)
a
where N = J r{Rn(r)}zdr (26)
o

Returning to Equation 16, we expand the left hand side in terms of the

eigenfunctions:

1 o
Let I V¥ = n§1 Fa(ORy(pr) (27)
and let w(r,t) = w*(x,t) + p(r)q(t) (28)

where the functions p(r) and q(t) are to be chosen so as to leave homogeneous
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boundarcy ccnditions on w at r=a. Such a choice is

p(z) = (a - ¥)
q(t) = —%fg%f—)—
Let
oh(a-n)i = J Ga(DIRy(PLT)
" n=1

wh(r,t) = ] Vo (E)R,(ppT)
Then substitution yields

ohiiy (£) + DpgWa(t) = = (Fy + G

a
where 1.1 2 .
Fn(t) ;;— i I v MT(r,t)Rn(pnr)dx

and

- _lpoh . plet) r -
Gn(t) R T r(a r)Rn(pnr)dr

o

[o]
The new initial conditions become:

w(r,0) = 0= wi(r,0) + (a-1)q(0)

wir,0) = 0= W(r,0) + (a-1)q(0)

Thus
[ W_(OR,(pgD) = = (&0 5 8 "'rtvo)
" n(Par) = = (&5 5571
or
W (0) = - — (a o) _1... I r(a—r)R (P r)dr
n \)D 1—\) N n'Pn

o)

a
w (0) = - = ’fI-f—f—)- ! I £(a-TIR_(p P)drF
n

L

(29)

(30)

31

(32)

(33)

(34)

(35)

(36a)
(36b}

{(37a)

(37)

(38a)

(38b)

e ————




Given a time history of temperature, then, MT may be computed from Equation
4c, and the time dependent amplitudes determined from equation 33, 34 ard 35,
i

) with initial conditions given by 38, i
]

¥

The solution for the analogous problem of the beam and the rectangular

plate have been given by Boley} and the observation made that the results

for the thermal vibrations of beams differ but little from those of plates,

That being the case, it would appear that the beam results should suffice

for the circular plate as well, if the effective beam length is taken to be

digmeter. The results are expressible in terms of a ratio of dyunamic to

static deflection,
3 "Bl
3 W 1+ 2e for B, > ~ .69
: R - 2 - L (39)
max static 2 for B1 < ~ .69
1
¥
1 where :
4 1/4 p
' B, = b2, (40)
i 2avk hp

and a is the plate radius. Physically, Bl2 corresponds to the ratio of thermal

response time to mechanical response time. The static deflection of a simply

supported plate under thermal load is obtained from Equation 16:

M1

DV2y + Ef- = harmonic function of r only (41;
-V

T TATY

For a solid plate, with temperature independent of r, and having a simply :

supported edge, , ,
Mp(a? - £2)6 :
W ——

Eh3

The stresses are
12MT E

rr - (1-whs ° T 1y

g aT (42a)

1
Boley and Weiner, pp 406-409,
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EaT
%8 = TI=VR' ~ I-v (420)

These, it should be noted, are identical to the stresses obtained in
Case 111 of section B2b, aside from changes in notation.

To account for the dynamic effect (approximately), we mey compute the
dimensionless ratio Bl’ from equation 40, and the stresses from 42, and adjust
by multiplying by the ratio R computed from equation 39.

In the case of clamped cdges, we note that the boundary conditions are

naturally homogenecus; even in the presence of the thermal locading, i.e.,
w(a,t) = Ei (a,t) =0,
2 ar 9

Hence, for homogeneous initial conditions, we need only solve equation 16.

We note immediately that in the special case where the temperature is inde-

oendent of r, that

v’.n.r=o
Hence, w(r,t) = O and the stressec fnr the dynamic problem (thermal shock)
are the same as for the quasistatic problem, as no displacements develop.
This is correct only to thc limits of thin piate theory, which does not pro-

vide for '"through the thickness dizplacements" in addition to those of the

neutral axis.

K.
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I11. STRESS GENERATION BY AIR ABSORPTION
A. The Generation of Front Surface Pressures
We consider a laser beam absorbed over a surface of a progressive front,
leaving behind a pressure P, density p, particle velocity U, measured in an
inertial frame. The front is taken to propagate at speed D. By conservation

of mass

pD = pg(D-U) 09
By conservation c¢f momentum
Pf—Po = pODU (2)
By conservation of energy
af-so-an=f-°—zt-l-,-f-(;1:-5i-) (3)

Aside from AE, the energy added per unit mass, these are the familiar Rankine
Hugoniot Jump conditions across a shock front.

Here, the added energy per unit mass is computed by observing that, for
any area, A, of the front, the laser flux f arriving over time At is assumed
to be completely absorbed by the volume of material processed during the same

interval, i.e.

AR .. fA At/Am (4)

The mass absorbing AE is

Am = ApoDAt:, (5)




Hence

i AE = f/PoD (6)

f

. For a perfect gas,

i

b

E -
E = CVT (7)
P = DRT (8)
R =Cp -Gy (9

k

' Y = CP/CV (10)

P ;1_=L(1_% (11)
¥ f po
]
Pe =P +p DU (12)
3
?
P 14 P.+P
f o f f 0 0}_ __J;) (13)

= §m— i ——
pf(v-l) oo(v—l) PP 2 P, Pg

The pressure density states achievable for a given f are those given by
Equation (13) where D is to be eliminated through (11) and (12). Combining

(11) and (12) to eliminate U yields (using n = polnf as a compression factor)

U = D(len) (14)

— ‘ -
Pf = Po + pOD (1-n) (15)

and finally

b 2} 1
+ 73 (Pf + Po)(n - 1) (16)
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This is readily solved for Pf if we ussume

P, << P an

whence

-1

13
This result has been given by Razierlwho argues that the steady detonation wave

occurs when the sonic speed behind the front given by

¢t =y — (19)

is equal to the shock propagation speed, measured with respect to the wave.

The sonic speed from (15) and the definition of n yields

c? = yD*(l-n)n (20)

Thus, the condition

[

D-U (21)

yields, after using (14), that

= Y*l (22)

2/3
A po
Pf = [Zf(y-l) 'Y—*':‘I (23)

IRazier, Y. P. '"Heating of a Gas by a Powerful Light Pulsge," Soviet
Ph!'IC. JBTP, Vol. 21’ No. 5’ 1965, PP. ).009-1017.
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Substituting (22) into (15) gives the detonation speed in terms of pressure as

Do .
P = ey D (24)
from which we obtain Razier's result
- 1/3
p- |2 (1’-1)] (25)
%

for the detonation speed as a function of energy absorbed.

Thus, we expect a cylinder of air to be shocked to this pressure Pf, the
length of the cylinder increasing with time as the detonation front propagates
up the beam at speed D.

However, the high pressure in the cylinder of air will relax as the
cylinder expands radially as a cylindrical blast wave. Initially the cylinder
is of beam radius a, and pressure P., given by (23). As the cylindrical blast
wave expands, the same Rankine Hugoniot Jump relations must be satisfied across

the shock, which we take to be strong, i.e.

_x+l
Y (26)

'ol'o
n
3 i

o

Hence the radial particle velocity Ur is related to the shock speed by

Ur = R(1 1+1) T y+l (27)
and
o R?
[
Pf ol (28)
54
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From considerations of similarity, as in the Taylor Blast Wave solution,
we note the energy per unit length in the 2z direction of the expanding

cyclinder is

R P(E)p R* 2, ,
E = Io {—D-ETY_-T)_ + 5 U(g)} 2wrdr (29)
where
E=r/R (30)
B(r) = p_R'P(E) (31)
; U(r) = RUCE) (32)
|
o Hence
P
fl
i
b 1{P(E)o 2
P, _ o ut(e) 202 .
3 E = [Io{pf(Y'l) + = }Edt‘l 2wR*R (33)
: L _
1 must be constant, or
]
RR = 2¢? (34)
from whizch we deduce that :
R =20/t ; R = C(/E)"} (35)

must describe the growth of the cylindrical blast wave.

For an initial radius, a, and initial pressure, Pf, ve see
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- . (y+DP,
o RO = —-—p——- (36)
: (o]

|

j

:

4

!

1

.?

1
e

, Hence
ﬁi
E -
{
(37)
-'g where
E
TP ¥
E [} = - (38)
: or
RIRE = afp (Ll (39)
P
o
3 Finally, i
L .
t: Pe
3 P(R) = a? 7T (40)
with
R = (2a(y+1)cft)L/Z (4l1)
This result differs slightly trom that of Nielsenzwho writes
R = /2c°at (42)

ZNielsen, P. E. 'Hydrodynamic Calculations of Surface Response in the
Presence of Laser-Supported Detonation Waves,' Journal of Applied Physics,
Vol. 46, No. 10, October 1975, pp. 4501-4505, ;
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where

c = [2 (43)

From the foregoing, we may expect that a high intensity laser will produce

i a pressure pulse on a surface placed in the beam. The pre:;sure will decay

quickly as a blast wave spreads radially. For high intensity lasers operating
in a pulsed mode, the result will be a pressure field, varying both spatially

and temporally in a very complex manner.

The mechanism of pressure generation we have considered is that known as

3 v

% the LSD (laser-supported detonation) wave. At lower intensities, a different
process, the LSC (laser-supported combustion) wave occurs3. In this case, the
energy balance on the processed column of air (plasma) must include the

radiation loss to the target material. Numerical studies have shown the

W TP T o

pressure generated by this mechanism to be 50-60 atm, with up to 50% of the

incident flux being re-~radiated to the target. The absorption of this radia-

W Ot <o

tion nroduces the process known as thermal enhancement,

3Thomaa, P. D. "Laser Absorption Wave Formation,'" AIAA Journal, Vol. 13,
No. 10, October 1975, pp. 1279-1286.
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B. The Response of Finite Plates
The response of an elastic plate to a spatially and time varying distri-
bution of pressure arises in several contexts of the genmeral problem of deter-

mining the response ¢f structures to High Intensity Laser radiation.

The
differential equation of the elementary theory of plate bending
. 3tw \
DV*w + ph rs il P(x,y,t) (1)

where w is the displacement normal to the plane was encountered earlier in

Jdetermiining the response to a thermally induced distributed moment. Here, we

restrict our attention to the isothermal deformations of a simply supported

circular plate under axisymmetric loading.

Equation (1) is obtained by noting
that Equation (9) (of Section II-C) must be replaced by

r ¢ X
27rQ = I ph2ww(r,t)rdr - , P(r,t)2nrdr
o o

where P(r,t) is an axisymmetric, distributed pressure.

Equations (5a) and (5b)

go through with the only change being the deletion of the thermal! moment. For

the simoly supported plate, the eigenfunctions are |
|
R (r) = J (pr) - Jo(pna)lo(pnr)llo(pna) (2)

with eigenvalues satisfying Equation (II-E-24). The first several are given

(for v = .3) 1in Leissa's monograph1 and others in more recent workz. The first

lLeissa, A. W,, Vibration of Plates, NASA SP-160, 1969.

Leissa, A. W. and Y. Narita, '"Natural Fraquencies of Simply Supported Circular
Plates," accepted for publication, Journal of Sound and Vibration.
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11 are tabulated in Table 1 for 2 values of Poissons ratio. As each eigenfunc-
tion satisfies the condition of vanishing moment and displacement on r = a,
any superposition does as well, and the general solution to Equation (1) may

be written as

1 - w(r,t) = nzl Vn(t)Rn(r) (3)

We expand the prescribed pressure, P(r,t) as a series of these eigenfunctions

P(r,t) = nZI fn(t)Rn(r) (&)

Substitution into Equation (1) leaves, after multipiication by Rn(r) and inte-

gration over the domain, a result analogous to II-C-33, or

Dpn“wn + phW_ = £ (¢) (5)

where

e
fn =5 I P(r,t)Rn(r)rdr .
n ‘o

Solutions to Equation (5) must satisfy desired initial cenditions; typically,

that the plate is at rest for negative time and is set in motion by a pressure

distribution first achieving nonzero values for t = O.

As a first example, consider a suddenly applied uniform pressure Po’ i.e.,

P(r,t) = Pou(t)u(b-r) (6)

Here u(s) is the unit step function
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u(s) =0 for 8 <0 (7a)

u(s) =1 for s> 0 (7b)

Then fn(t) = 0 for t < O, while for all t > O

) Po b Po b J (p a) b
£ = = == | — 2.0
£ (6) = £° = ] Reae = € | 220y () - T2 O 1y ) (8)
n’'o n | n i
and
rg.2
1 1+v 1
= a? ——— = 2 2
N =a | 3 ( 211/10)] 9
The modal amplituvdes aze
e O
l.
wn = An sin mnt + B cos ©_ t + ‘;‘t . (10)

and satisfaction of the homogeneous initial condition requires that

= -f ° LI -
Bn = fn /Dpn ; An = 0 (11)
Hence
J (pna)
Pob - {Jl(Pnb) T_?;—;T 1 (p b)} Jo(p a)
w(r,t) = - ) N p {Jo(pnr) - ifj;——— 1 (p r)}(l - cos w_ t} (12)
n=1 n'n
where
pp_*
: _ L0
Uy = oh (13)
'_.1';._&,.."&9‘.‘..‘- e e 1 gt iz

e+ Y
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b
b
4
'

!
r
L;
i
i
;
i

abean alibbo e o an

and Nn are as given above. Now let

Jo(pna)
P b (Jl(pnb) - T—T;—;T Il(pnb)}
A =2 o ’n
n D N p.°
so that
J (pna)
wir,t) = § A {1l - cos mnt}{Jo(pnr) - Io(pna) Io(p“r)}

The maximum moment occurs at r = O and is evaluated from

M_ = -D(3%w/ar? + v/r aw/ar)

We find
J (p_a)
o''n
J1(pnb) T 1 (p a) Il(pnb)
(l+v) o' n
Mr = MG = Po(ba) 2 ) (p a)?
max max Py

1 - cos w_t
n

(14)

(15)

(16)

7

l-v +

2

{ Jo(pna)l {
1 4+
Io(pna) EII -y ['l+v 1 Ilz(pna)
o

Stresses are computed from the maximum moments from

max max

For computational convenience, let us define

62
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(18)




J (p_a) J (p_a)
o''n o''n
{Jl(pnb) - T:T;;;T Il(pnb)}(l + T:T;;;T}
Fn(b/a’n) = 9 J l(p ﬂ) I !(p 8) (19)
Ao gepay (22,1 Lo )
| 2 o ‘Pq 1-v 2 1 (pna) Py
Then
Hmax = Poa’(b/a)(lgx n£1 Fn(b/a,n)(l - cos wnt) (20)
and the maximum stresses are
O ax = 3(1+v)P°(§)'(%) n£1 Fn(b/a,n)(l - cos wnt) (21)

Table II presents values of Fn for several b/a and several modes for materiale
with v = .3, and may bz used to determine which modes contribute most signifi-
cantly to the stress history for any b/a. 1f b = a, the first mode predominates

and we find (for v = .3)

Fl(l,l) = 344 (22)

The stress history at the plate center is

- 1] - ‘ ;
I ax = 1.34 Po(a/h) (1 - cos wlt) (23)

1. _Response to a Single Pulse

We may deduce the response to a square pulse,

P=P 0O<t<rt (24a)
P=20 t > (24Db)
63
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TABLE II Fn(b/a,n) for v =
b/a=.1 b/a=.3 b/a=.5 b/a=1.0
n
1 .07601 .21608 32204 .34395
2 .02802 06120 04644 - .03441
3 .01666 .02021 -.00739 01113
4 ,01126 Q0286 -.00679 -.00515
5 .00788 -.00316 .00175 .00286
6 .00561 -.00233 .00234 -.00178
7 .00396 -.00135 -.00070 .00119
8 .00272 00044 -.00111 -.00085
9 .00178 .0U109 .00036 00063
10 .00106 ,00074 00063 -.00048
11 .00052 .00003 -.00021 00037
TABLE II1 Fn(b/a,n) for v = .2% !
b/a=.1 b/a=.3 b/a=.5 b/a=1.0
|
q 1 .07903 .22482 .33556 .35990 :
i 2 02815 06156 .G4693 -.3431
3 .01669 .02028  —.00737 .G1109
i 4 .o1121 .00287  -.00681  -.00513
% 5 .00788 ~.00316 .C0174 .00285
g *
:3 for n > 6, values same as for v = .3
1
1
%
!




by superposition. For t < 1, Equation (21) applies. For t > v, we find

; O ax * 3(1+v)Po(%)’(%) ) Fn(b/a,n)[cos w {t-1) - cos wnt] (25)

The maximum contribution for any one mode occurs when t = t.s where

e e o

tan wntc = -cot(mnt/2) (26)

A useful approximation results for pulses of duration much less than the period

4 of the dominant mode,
3 0t =w/2 (27)
k‘ nec
- and
3
3 o = 3(1s1 (B IF (b/a,Nu (28)
, max o'h’ *a’’N e
|
Ef where the impulse per unit area, Io = Pot, and N denotes the dominant mode.
t

For a uniform pressure, the dominant mode is the first and

= :
%nax = 1.34 Io(a/h) Wy (29)

For a nonuniform pressure, the first mode response gives

uIITotnl l'.1
Omax = 3(1+v) - (37;) (30)

Recall from Equation (13) that

/D 1 [ E h ‘
w. =/ onatf (pna)‘ = /1T, (;'r)(pna)‘ (31)
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Thus, the necessary modes for the modal analysis are governed by

(pna)‘l“n(b/a.n).

This result may be used for comparison with computations performed

by Holmes, Keough and Desmonda for pyrocerams (E = 16.5 x 10* psi;

p = .0941 1b/in®) v = .25, a = & in., h = 1/4 in. subjected to a pulse

P(r,t) = Poe

-(r/s)’e-t/t (32)

T = 20 psec, s = 2.75 inches, P° = 1087 psi

Such a pressure distribution history gives a total impulse of

total

which is equivalent to a

w

and the period is

ra 2
1

= I 29(P(r,t))rdr dt (33a)
o
a
TP 2% I e_(r/s)'rdr (33b)
° o
tPows‘(l - e—(a/s)‘) (33¢)
(2.17 x 1072 psi sec)ws?(.8795) (33d)

uniform pressure P° over b = ,938 s. For this disk,

1= 6.127 x 10* rad/sec (34)

= 1.025 x 10~ sec = 1025 usec (35)

We obtain a maximum stress from Equation (30)

4“01-0:, B. S., D. D. Keough and T. P. Desmond, Monthly Status Report #2,
SRI International Project PYU-7259, Contract No. F29601-78-C-0041, August 1978.
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O ax * 3.9(2.17 x 10-2 psi sec)(.8795)(6.127 x 10%/sec)

gt F (.645,1)

. (ET) —645 — = 30.6 ksi (36)

occurring at the quarter period of the first mode, 256 usec.

Values of the function Fn(b/a,n) and the product (pna)’Fn(b/a,n) are given
in Tables 111 and IV for v = .2, Neither is very sensitive to the value of v.
The function Fn was seen from Equation (21) to be useful in determining the
dominant mode in the response due to the step application of a uniform pressure,
and the tabulated values show that the dominant mode is the first. The values
tabulated as Table IV demonstrate that the response to a pulse loading which
does not flood the entire plate will contain strong contributions frem a number
of modes. For example, in the case of b/a = .1, the contribution of the llth

mode is greater than the first,

2. Response to a Train of Pulses

Let us consider the response of a simply supported elastic plate of radius

a to a train of pulses of a particular temporal variation:

P(r,t) = P_ U(b-r)[1l - cos 9t] fort >0 (37a)

P(r,t) = O for t <0 (37b)

This may be considered to approximate a train of '"square" pulses, of duration.
T/2 and amplitude 2P°, recurring with period T = 2%/R, as shown in Figure 9.

Each pulse delivers an impulse

a T
IP = I I P(r,t)2%rdr (38a)

o'o0

or
2%/
_ 2 - - 2
IP = wPob ]o (1l cos fit)dt Powb T (38b)
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TABLE IV (pna)’Fn(b/a) for v = .2

i b/a=.1 b/a=.2 b/a=.3 b/a=.5 b/a=1.0
| "
? 1 237797 .74113 1.07522 1.60483 1.72125
2 .83325 1.48629 1.82233 1.38935 -1.01556
3 1.23567 1.82646 1.50143 - .54562 .82101
d 4 1.54893 1.66943 .39704 - .94082 - .70896
y 5 1.75084 1.08918 - .70196 .38713 .63343
: 6 1.82879 .28746 -1.08477 .76221 - .57789 E
7 1.77999 - 47691 - 50673 - .31562 53485
8 1.61179 - .97354 .26017 - 65797 - .50023
9 1.34082 -1.07376 .82247 .27297 47162 ;
10 .99163 - .78715 .69000 .58750 - 44732
11 .59410 - 24977 .03482 - .24383 .42650
4
A
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! The modal amplitudes are given by

(1] ~ _
phwn + Dp_ “n = fn(t)

where

1 (8
fn(t) =§;J° P(r,t)Rn(r)rdr

As before, we find N from Equation (9), and that

ML s

P (l-cos Qt) J (p_a)
£(0) = 0 [i J,(p,b) - o n_b Il(pnb)]

Nn L pn IO(pna) pn

or

w Dp_*

n
wn + eh

W =C (1 - cos Qt)
n n

where

1 _ Jo(pna) 1
cn = thn (bpn) Jl(pnb) - Io(pna) Il(pnb) T

We first note the possibility of resonmance if

Dpn~

3
“crit ~ ph

or

BN vy & gSa'_lhz
Terie © 4r/3(1-v%) E (pna)
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(40)

(4l1)

(42)

(43)

(44)

(45)
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It 1s to be noted here that in the pulse train modeled, T is the pulse spacing,

rather than the pulse duration.

For a long train of pulses, with T near to Tcrit‘

) LA wn(l) + wn(z) + wn(” (46)
o = /-1% o et (o (47)
wn(l) - u—c-'} (48)
“n
wn(Z) = ﬁé“’n_n-r cos At (49)
w® e [;i; . Wlw?] cos u_t (50)

For long times, "n(3) will cease to be important, through energy dissipation not

included in this analysis. We have, then, for such long times

- 1 J (
= —r o _n
(51)
{—r %’-‘—“-E} R (r)

where the eigenfunctions, Rn(r), are as given previously, Equation (2). We may

again compute moments, and stresses, finding the maximum stress at the plate

center (for long times) to be

1 -
a _ _cos ft
“max = 3V @) gy L E (e (L gD (52)
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At short times, a greater stress may occur at t = t1 such that

"

Q
2 : _ ; 2
(n /wn 2) sin wnt 5 sin S’ttl (53)

n

1

of magnitude

{(cos Qt -~ cos wnt)
cos mnt) + (n,/wn, ) } o (54)

1 )
Onax = 3(1+v) (%) ;?ﬁr n£1 Fn(b/a,n){(l

If g~ © ) the forced response [Equation (54))] may become very large. 1If, in

fact, 8 = NN' we find

c

N
WN = ;;T (1L - wyt sin th) (55)
and
a 1 th
Orax = 3C1+V) (D) ﬁﬁ-; Fy(b/a,N) {1 - =~ sin w .t} (56)

It is not likely that a target can be driven precisely at one of its resumnant
frequencies; however, if this could be achieved, the stress level after M pulses

would be (for a/b = 1 and resonating the first mode)

1 MT
Opax = 3(1+V) ;—T-E,- F (1,1) o 5 (57a)
1
= 12?) oFH JT;:'B Tl-'lu’> ("1’)'(3}"’) (57b)
I —
- Slztgl;gg /-1-%?1—_1\),-7 (2.231)? (57¢)
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For the pyroceram disk previously cited, a stress of 18 ksi would be achieved

in 100 pulses of .7 x 10'2 1b~sec per pulse, as opposed to the single pulse of

;
1
!
|

about 60 times that magnitude. That the resonance effect is not more effective

is somevhat surpriving. The explanation probably lies in the fact that the long

train of small pulses produces, even at resonance, what is essentially a static

response, whereas the single pulse of short duration allows the dynamic ampli-

|~

fication (typically a factor of two) that is characteristic of impulse response.

© e e pt——

o
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IV. A Fracture Criterion for Brittle Materials

A. Introduction
Experimerts have shown that a ceramic material heated over some portion

of its surface will fracture. These fractures appear to originate at the rear

|

surface, under the heated zone. Consequently, we deduce that radial conduc-
tion, even in poor conductors such as ceramics, i{s sufficient to prevent large
tensile stresses from forming outside of the heated region, as described in

Section 11.

Two other investigators have developed criteria for the fracture of

ceramics. Mechlosky1 assumes that stresses of magnitude

a
o = 1—._\; E (ATz) (1)

are developed and that fracture occurs when a critical value is reached. He

takes the temperature rise to be that of Goodmans2 premelting approximation

R TN

Iah x Iat
- e——— - - 2 t— -
J
- where . j
1 |
X ;
?: ht ;
t! = r™ (3) i

Solving for the time t to reach a critical stress, o, s we find

kt 1 1 Xy2 . 2k (1-v)o i
A YRS w A )

1Hecholsky, T. T., et al., "Effect of 3.8u Laser Radiation ¢n Ceramics",
Proceedings of 2nd Conference on Laser Effects and Hardening, NASA Ames,
July 1975,

2Goodmln, T. R, and J. J. Shea, '"The Melting of Finite Slabs'", Journal

of Applied Mechanics, Vol. 27, pp 16-24, March 1960.
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A factor of two has been introduced into the last term to account for the
radial expansion of the surrounding material, as in Section iII, and is needed
to produce Mechlosky's result.

Mechlosky assumes that the critical value of x is h/2, thus he finds a

fracture time

Y T2 Th  aE ()

For sufficiently high flux (low strength) the right hand term becomes
negligible leading to a dimensionless fracture time which is ndependeni of
intensity.

Several observations regarding this criterion must be made. First, the
stress distribution assumed (Equation 1) is appropriate only for predicting
the compressive stress arising under two-dimensional constraint, or, with the
inclusion of the factor of 2, partial constraint. No out of plane deformation
is allowed. Stresses, in this model, are compressive everywnere and, as such,
the stresscs at the midplane would appear to have no particular significance.
Further, the model does not account for the observed origin of fracture at the
rear surface. Finally, the result is extremely sensitive to the value of x
employed. Nonetheless, it must be noted that quite good results have been
obtained with it.

Laugh11n3 has developed a means of estimating fracture time based on the
8 assumption that fracture will occur when tensile stresses on the rear face

é : reach a critical va.ue. He begins by using the exact solution for the

3Laugh11n, W.,'Predicting the Laser Induced Thermal Fracture of Infrared
and Radar Transm.tting Materials', Proceedlings of First Classified Conference
on High Energy Laser Technology, S#n Diego CA, October 1974,
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temperature rise in a uniformly heated slab to predict thermal stresses,
under the assumption that the material surrounding the heated area constrains
all bending deformation but allows radial expansion to freely occur. This
corresponds to the mechanical boundary condition discussed as case II in
Section 11.B.2. \To account for meltinga, ke computes stresses in the same
manner, with the temperature distribution taken to be that in a slab with
front face temperature fixed at meeting. As the slab continues to heat,
we note that the front face gradient decreases, and thus, the incident flux
is treated as if it were reduced. Laughlin has also obtained generally sat-
isfactory results with his method.

While Laughl’n's model appears to have a firmer basis that that of
Mechlosky, two questions remain open. First, the mechanical boundary con-

dition at the edge of the heated zone, and secondly, the treatment of the

influence of melting on the stresses in the solid portion.

B. The Influence of Mechanical Boundary Condition
.-/—\ ~

Lat us consider a section of a structural member to be subjected to a
uniform absorbed intensity over a circle of radius a, the remainder of the
structure remaining at the ambient temperature which, for convenience, will
be taken as T = O. If we neglect the consequences of radial heat flow out

*

of the heated region , then the temperatures for r < a are given by Equa-
tion (18) of Section II.B.2. or, in terms of a coordinate system in the

midplane of the pliate with the heated face being z = h/2, by

*
Recall that it was shown in an earlier section that radlial heat flow
does not reduce the magnitude of stresses within the heated zone.

aLaughlin, W. T., "Predicting the Las2r Induced Thermal Fracture of
Partially Transparent Materials (U)", 2nd DOD Conference on Laser Effects
and Hardening, NASA Ames, July 1975.

76

PP 4




A g v

TR

Niataiasly o3

) = fat g Eﬂi Lez). l(i) L,
T(z,t THR Tk 2h *2% -
Ih n
2 ~1) ~kn?n?t/h? z 1
- —E— T 3 i—;y— e T / cos nr (; + 5)} (1)
In what follows, a dimensionless time
T = Kt/hz (2)

will be used.

For r < a, the displacements and stresses are found to be

o =0 (3a)
zz
o _ =g —-—E-—[cz»rc-a'r] (3b)
rr 60 = 1l-v 1 2
u_ = C,2t + C,r (4a)
UO =0 (4b)

where the constants C1 and C2 are to be determined from the boundary condi-
tions on r = a. The four possible boundary conditions arising from the edge
r = a being free or constrained against in displacement and free or con-
strained against rotation were explored in a previous section.

We now assume the line r = a, circumscribing the heated zone, to be
elastically restrained by the surrounding material, i.e., on r = a the in-
fluence of the surrounding material may be represented by moments and forces

per unit lengih
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where

~ | ol
_ v R
¢ = I ar
r=a
h/2
M = I zorr dz
T o2
‘r=a
and
Fr = CT6
where
h/2
F =J o
r -h,'2 rr dz
=
s =1
r +
r=a , z=0

Further, the displacements and rotations of the heated region, on the line
r = a, must match those of the exterior region. Here, ﬁr and w are the

inplane and out of plane displacements, respectively in the exterior

(unheated) region.

The constants of (5b) and (4a) result from matching displacement, slope,

force and moment at r = a

¢ = Ur(a,o)'= Cza
aur
’=—"5;‘(.,0)——C
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h/2 E Clh' h/2

M_ = I—hlz zorr(a,z)dz = 1= [_Ti_ -a I_h/z zTdz ] (lle)
h/2 E h/2

F!‘ = ]-h/z ort(a,z)dz = T—_\) [Czh -a J-hlz sz] (114d)

These four equations, together with the two stiffness constants, defined by

Equations (5) and (8), permit the constants C, and C, to be determined. We

find:
h/2
a I Tdz

c. = =h/2 (12)

2 h (1-v) c

- E %%

1 h/2 ‘

C, =13 i) a J zTdz ] (13)

=h/2

The four cases considered in Section II.B.2. may, of course, be recovered by
setting to zero, or infinity, the two stiffnesses, CT and CB’ as appropriate.

We first consider the flat plate of thickness h surrounding the heated re-
gion. We provide that the elastic constants, E, v, may differ from those of
the heated region so that a thermal softening effect may be included, if

desired. The inplane displacements and stresses are those of the Lame solu-

tion, as used previously (Section II-B).

Ur = Ar + B/r (14a)
Ue =0 (14b)
[} =0 (15a)
22




: g A, _ B 1

: rr !(T:3 Y ;T) (15b) j
b

| : 0,. = E(==w + - 19 (15b)

. 68 1-v 1+v r?

L For a finite circular plate, with Fr = 0 on the outer radius, r = b, we find

B = A(%%)_b (16)

For an infinite sheet, A = O.

These results may be combined to deduce the stiffness constant for the

inplane motion, CT' Using Equations (8), (9), and (10), we find

: (1 - &5)
i N 3
CT = - L‘-E— ~ > ~ a‘ (17)
n (1+v) + (1=v) BT
3
b
X and
: 2 h/2
~ ~a’- a
: [(1+9) + (I'V)E?] h ] Tdz
| c h? (18)
= ~ . al e 3
E% 2 (14+v) + (1-v) %1 + (1=-v) E (1-%1)
F In order to facilitate comparison with a fracture criterion developed by
.
Laughlin, it is of interest to determine the stresses arising in a finite
sheet of the same modulus, with the central region completely constrained
against bending, CB =w , In this case,
;. 2 ;
[(1ev) + (l-v)gy] a J Tdz
c, = =h/2 (19)
2 2h
From Equations (12) and (13), C1 = 0 and

i e o em. . o a e ac e



S EI,

al
[(1ev) + (1-v)§1] Ih/Z

Ea
orr = T:; { h Tdz - T} (20)

-h/2

As b + a, Case II of Section II-B-2 results. As b + =, we find

h/2
Ea (l+v) .
Oy = Tow L 2h I_m Tdz - 1] (21)

In general, we should not assume that the surrounding, unheated material
will suffice to completely constrain the edges of the heated disk from
bending. Rather, the material in a < r < b will deflect as an elastic plate,
free on r = b but with applied moment on r = a. The governing equation for

the axisymmetric lateral deflection of a thin, unlcaded elastic plate is
Ve =0 (22)
has solution
w=0Clnr + Dr? (23)

Strains, stresses and moments may be deduced as previously, Section 1I-C,

Equations (1) to (4), to yield

Ur(r,z) = -z(% + 2Dr) (24)
From which
g _ = - —EET [- e (1=9) + 2D(1+V)] (25)
rr l-v 'z

The moment, Hr’ is found to be
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Cod .‘MMI’_—M—-A e bamemkae + On

Hﬂ—!h—'[- C 1 2D]

r 12 ) o * 0 (26)
Since the moment at r = b must vanish, the moment at r = a is found to be
E n® ¢ at
Nl =+ I 12T (1 ~ BT) (27)
The slope at r = a is seen io be
dw C i-v a?
from which Equation (7) may be used to deduce the stiffness as
2
Eh (1 - &)
Cp = T3(1+v)a (1 + 1V al (29)
1+v bY
Hence
h/2
a I zTdz
1 h a
(1 - FT)

[1+ % (1-v)

~ ~ar
(1+v + (1-v) ET)

In the case of an infinite sheet with elastic properties on r < a, these

reduce to
h/2 )
¢, - 2 (1; ) {a ] 2Tdz) (31)
~h/2
with
h/2
02 = (g;‘) a I Tdz. (32)
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In ordar to evaluate the stresses from Equation (3b), we need compute

certain integrals of the temperature distribution

h/2 I h
J Tdz = 7%; {2th} (33) -
~h/2 )

h/2 Ih , 2 Y S

[ eman - A5 -0y ML (34)

-h/2

Let us examine the following cases:

A: The edge r = a is completely constrained against rotation, but is only
| partially constrained against lateral expansion by the radial deformation of

a finite, circular plate. The constant Cl’ as noted previously, is zero and

\ a?
(1+v) + (l-v) =¢
c, = [ 51
f 2 p) ;

Tdz (35)

>rie

Jh/Z

-h/2

The stresses in r < a are

Ea laf al
% r = %6 = Tov Ik LL14v) + (1-v) P} L o- 2t

e

1 -ninit

T TR I SO S C VL SRR (36)
h R-12 YT n? cos mmy *t 2

For this boundary condition, the maximum stress occurs on the rear face

(¢ = -h/2) and is

“max = T-v & (12 TG i - ST) + 3T E n e } (37)

Figure 1 displays graphically this equation for three cases: a/b = 1 (which

83




corresponds to Laughlins criterion); a/b = 0 (which corresponds to the infi-
nite sheet with a heated spot and an intermediate case (a/b = 1/2), all with
v = .J,

Qualitative differences between the two extreme cases are seen. For
a/b = 1, the rear face stress increases monotonically reaching a maximum

(as t + =) of

. Lo a 1 Ea "a 3
max  l=v X &' 1-v k (28)

On the other hand, the elastic constraint caused by the infinite sheet leads
to the eventual (1 -~ 1/2) development of compressive stresses on the rear

face, with the maximum tensile stress occurring at t = .175, of magnitude

I h I h

a Ea "a
Gmax = k (0007) 1_’\’ k (39)

From the results given in Figure 10, a failure time can be predicted. 1If the
case a/b = 1 is used, Laughlins rer.its will be recovered. It is interesting
to note that for times in the region where most failures have been observed,
that the case for a/b = 1 overestimates the stress by about 50% or equiva-
lently provides an estimate of the fracture time which is about 60% of that
which would be obtained if the a/b = = results were to be used.

Let us now consider a second case: where the line r = a is only par-
tielly constrained against btoth expansion and rotation by the surrounding
material. C2 is as before, but C1 is no longer zero, for the bending
deformation will now take place. Using (33) and (34) in (35) and (30)

(taking E = E and v = V) we find the stress (Equation (3b) to be
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Lt

I I L T -2 3 —-—;——e_n!ﬁ] + (R=2)

“cr ~ %6 T (1-v) 2k ' B 12 = =° n T

. odd

{

? [ 1 4 1)1 _nig? 1

N - [(K)‘ + ﬁ - Tf] + 7T ) L:p}- e ¥ cos nw(ﬁ + 5) } (40)
? . where
‘!
: R = (l+4v) + (1l-v) By (41)
For a = b, R = 2, and we find, for long times, ;

1k
t - - Lo __a .1 6z,
E %er = %0 = T1-v) 2k ‘12 - &7} (42)

3 which is the result previously obtained for the free plate. For b = =, the

long time stresses are

Ea Iah z l-v.2 '
O .p = Opg = T 2K {ﬁ - (E)z - (T)K - (1-v)T} (43) |

Evaluating Equation (40) at the rear face (z = -h/2), we find that !

e
—

Ih
2E t
o . = 000 = ?T:%j —E- {- % [(1+v) + (1-v) %7]
rear rear "
2.2
1 8 P ¢ ) al 1
[Ti - ogd - ] - 7 -8+ 13
)" _pigt
R
n

which is seen to differ from Equation (37) (the result when bending deforma-

ST AN SO, ¥ LN



tions are constrained) by the inclusion of the term

3 t 18 T
-7 (Lev s (1-v) %T)(Tf -3F ) )

odd

Stresses at the rear face, for short times, are given in Figure ll and are seen
to remain compressive. Long time values (Equation (42) and Equation (43)) are
also seen to be compressive.

Thus, we see that properly accounting for the mechanical boundary con-
dition at the edge of the heated region shows the stresses on the rear face
to remain compressive.

Tensile stresses will develop in the interior. It is to be recalled from
Chapter 11 (Figure 6) that a uniform flux over one face of an infinite sheet
leads to compressive stresses on the outer surface and tensile ;tresses on
the centerline. These results are reviewed as Figure 12a. If we now consider
a heated radius a within a disk of outer radius b, the constraint of the
unheated area superposes compressive stresses, leading to the time history
shown in Figure 12b (for a/b + 0). Small compressive stresses remain on the
center only for short times.

Thus, if fracture due to tensile stresses on the rear surface is observed,
the fracture must originate outside the heated area, according to the mechanism
of Chapter I1B.

The stresses in a disk of radius b having an axisymmetric temperature
distribution are given in Equations 11-A-19 and 20. For a temperature distri-

bution

T=T on r<a (46a)
T=0 on a<r<b (16b)
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we find
ﬂ.
- o~ 3 - A’
Ogp = O = haTo(sr 1)/2 on 0<r<a {&7a)
a! at <r<h
9., = EuTo(;r - ;r)/2 on ac<rx (47b)
and
(5; 5;)/2 <r<b (48)
Tog = EaTo T * T on a<rc«

Thus, the greatest tensiie stress occurs at r = a, just outside the heated area.

For no losses, and no radial conduction, the average temperature on r X a

is

To = o0 h t (49)

and the corresponding average tensile stress ror r = at increases linearly with

time as

EaIa az
— 5 h Gr+ D

rafer

(50)

For the infinite disk, Equation I1I-B-1~12 is recovered. Radial conduction will
lead to a reduction of these stresses, in the manner of Section 11-A, where
asymptotic valuer for long times have already been given. It ghould be noted
that these are not the only stresses developed. Continuity of bending, as well
as in-plane deformation, will give rise tc a moment Hae and further stresses
Cog These will not be considered ac they will quickly decay wich distance

into the unhested portion. Rather, the influence of radial conductivity on
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tensile stresses for r > a will be explored. The stress time history for » = 0

is glven by Equation (50). For non-zero x, a numerical procedure was developed

for the transient on dimensional radial tempexature distribution in a finite .
disk. Once values of temperature were found, stresses were computed from
fquations I11-A-19 and 20, ‘Typical results for the transient circumferential
stress are given in Figure 13. Here the heated radius was taken toc be 4 cm on
a digsk 1 cm thick of outer radius 9.73 cm. Cp was taken to be unity (1 Joule/
gn’K), p = 3 gm/cm® and two values of conductivity, leading to K = .1 cm?/sec

and ¥ = .0l cm®/sec, were considered. The radial conduction is seen to reduce,

but not eliminate,»the development of the tensile stress.

The influence of conductivity is more readily seen from the results pre-
sented as Figure l4, A family of hypothetical materials were considered, all
with pCp = 3 Joule/cm®°K. A disk 9.73 cm in radius and 1 cm thick was con-
sidered to be subjected to a constant absorbed flux over a central circle of
4 cm in radius. The time to generate tensile stresses of two values is
presented. From the results it can be seen that tensile fracture vutside
the heated region may indeed occur, and that the time tu produce a given stress

is increased by thermal conduction. Thus, heating a uniform disk will produce

significant tensile stresses cutside the heated region, and these will provide

the failure mechanism for a brittle marerial.
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¢, 1Influence of Melting
When the heated surface of the slab reaches the melting temperature, the

temperature distribution is no longer that given by Equation (1I1.B.l.), and
the stresses, as computed in the previous section, are no longer applicable.
Since the problem of det.rmining the temperacure distribution is, in such

- cases, nonlinear, we must resort to approximate methods. The heat-balance
integral methcd of Goodman and Shea is applicable in such cases and will be
used to determine an approximate solution to the one-dimensional heat transfer

problem with change in phase, and the thermal stress will then he determined

from this approximate solution. It will prove useful to recognize two crit-
ical distinctions, first, whether the slab is thin or thick, and second,
whether the melt is completely retained or completely removed. A slab will
be regarded as thick if fron: face melting begins before the rear surface

temperature changes and thin when the converse occurs.

l. Meiting of Thin Slabs With Melt Retention

For temperatures below melting, we assume the temperature distribution

in a slab of thickness { absorbing a flux I on x =0 to be
T = a(t) + b(t)x + c(t)x? for x < § (la)
T=0 for x > § y (1b)

where 6(t) is a thermal penetration distance. On x = O,

aT i ‘
Ia = —kaxL: ~kb(x) (2)
on x = §
aT
T=Oandax=0 (3)




hence

18 x
T-.-?l:(l—'c‘). (4)

This approximation cannot satisfy the differential equation exactly but only

in an average manner. Thus, we require

.1 6
art ! aT
Ika—;rzj e, o1 (5)
(o] o
1 pC
aT e T __a p2.¢
k 3% A kx| =la= " 398 (6)

which may be integrated to give

8(t) = Y6kt (7)

since § = 0 at t = O. The time to front surface melting is then found from

(4) to be
1 2kTm
= — 2
te T8k T (8)
ZkTm
and is valid if G(tm) =7 < l. This notation suggests the introduction of

a dimensionless measure of the applied flux. Let

T (2kT)) (9)

then for i > 1, melting begins before the rear surface temperature changes,
and the slab is thermally thick.

We first consider the case i < 1, the case considered by Goodman and
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Sheaz, with results used by Hecholskyl « At some time tl less than tm’ given
by (8), the penetration depth & reaches x = {. The assumed temperature dis-

tribution, Equation (4), is no longer appropriate. The new boundary condi-

tions become

1 = -kgI onx =0 (10a)
a ax
aT A
0= -Lax on x = 4‘ (10‘)/
From (7),
“I
thus, the approximate solution for t > tl hecomes
T = a(e) - P (12)
= k 2kl

Again, we satisfy the averaged differential equation, this time obtained by

integrating through the entire slab thickness

T aT P . .
k x |, -k x = %t . pCpTdt = pCpai (13)

The resulting differential equation

1
* a
a = ncp (14)

is easily solved and substituted into (12) to yield the approximate tempera-

ture distribution
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T = I.t +C -~ 1x + 1 x? (15)
= ocpZ x 'l

The constant of integration, C , is determined by requiring that the tempera-

ture Glstribution for t > t, (Equation (15)) matches that for v < t, (Equa-

tion (4)) when & = L. The result is
a I x
T‘B?_Z(“‘i)*'ﬁ(l’z)‘ (16)
P

This is Equation (2) of 1V.A.

It is convenient to replace real time, t, by a dimensionless time,

. =§§ Qan
Then,
14
a 14 x
TzT(t-TG)+ﬁ(l-z)‘ (18)
T = % (19)

This solution is valid until the front surface reaches melting, or until

KTy 1 1 1
T=T, o+ T:I -3+ "3 (20)

where it is to be recalled that i < 1.

I1f the flux is continued at this same value for longer periods of time,
a melting front will form and propagate into the solid, leuving behind moltew
material, with thermal properties we will denote by a subscript, m.

We again assume parabolic temperature distributions, measured above and
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below melting, 1.0., T = T. + U- and T = T- + U, respectively

U- = d(t) + e(t)x + £t)x* on0 <x <3

U=a(t) + b(t)x + c(t)x? ons <x <Jd

with boundary conditions on the front and rear

: SUn
-k — =1
m X a
o
U
k — =0
™y
g
1
%_
On the melt line, x = s,
U =U=20
m
3
£ and
|
i _kﬂ k.a! _Lgi
m ax Ix T Trde

functions, £(t) and C(t) in

1
um = i: (s = x) + £(e)(x? - s?)

U =0(t) {24(s = x) + (x* - s?))
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The first four equations enabie us to reduce each of (21) to two unknown

(21a)

(21b)

(22a)

(22v)

(23)

(24)

(25)

(26)

to be determined by the heat balance integral. The flux matching condition,

Equation (24), then provides the means of determining the unknown time hist=vy

R

]




1
1
of the penetration deptl, s.
Let
s
- . Ls! 2
em-I Umdx-k 2~-f(t:)3ss (27)
o m
4 2, 2
0 = I Udx = C(t) (-il + 2sd? - 233 o 3 s?) (28)
' s
' Applying the heat balance integral on
s a'um s OUm
I km EYLE dx = I -—a—t- pmcpm dx (29a)
o o
and
4 33y { au :
I k K{ dx = I -3? mePm dx (29b)
s s
.
g‘ produces
| 4
E; . 3Um delll E
i — = —————
*m s R *m’pm gt (30a) j
" !
: and i
au de
-kE S=EEDCP (30b) .
]
But .
au 3ae(t
x| = C(t)2(s ~4) = m% (31)
99




and

aum 1 I. 30m
-—a-;- = —r + f(t)Zs =‘z_k- - _;I‘ (32)
] m m

i Substituting, we arrive at

i de  _3ke(e)
pCp ac = z;—:ﬁzjg (33)
de 31 3k e
Pulpm & T T T ST (34)

! . 1 3k 6 (t)

At the onset of melting, t = ta? 3 = 0 and 6, = 0. The temperature distribu-

” ticn in the solid,

U= C(tm){x’ - 2dx} (36)

must match that previously given by the premelting solution, Equation (i6).

Thexefore
Ia
C(tm) = 5%l (37)
and
lai'
o(t ) = - —p (38) ‘

Introducing the same new variables as Goodman,

o = 3 (39)

e MEMYE . L el



i
i
;
!
¥
!

e e e 5, - B R

pmCBllI em
w = pC T—“z (ao)
P m
0
V=57 (41)
m
T = Ik; (¢t - tm) (42)
T,
ws B2 (43)
K
v =2 (44)
K

and the dimensionless flux, i, as previously defined, we arrive at

dv 3v
dt == (1 _ 0)! (45)
do 3G -% (46)
dx o
1 do v 3v .
war - TP LT YOyt “n
with 0(0) = 0, w(0) = 0, v(0) = - %% these are the same equations given by

Goodman, who has given approximate solutions obtained by a perturbation
technique.

We are now in a position to develop expressions for the stresses devel-
oped by these approximate temper-ture distributions. Three time ranges must
be considered. To simplify cowparison with Laughlin's results, we will con-
sidar the same boundary condition, i.e., no inplane force and no bending

displacement. Mence,
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E
% = %6 = 1o (Clx - aT) (48)
in the solid region, and Orr = Oag = 0 in the molten region. Hence,
d
Ea 1 .
N e R ()

Prior to the time, tl.’ when the rear surface temperature changes, the temper-

ature is
IaG x
T=2—k-(1—7,s-)z for 0 < x < § (50a)
T=0 for § < x < U (50b)
with
) = J6kE £ L
§(t) = V6Kt or t < tj_ =& (51)
I /6Kt —
Ea “a 1 /6Kt x —
o s = — [— - (1 - )z] on 0 < x < V6Kt (52)
rr 80 ~ l-v 2k 3 4 JoRe
Ea Iat —
O = %8 = Ty ;2—0; on /uKt < x < U (53)

Thus, the maximum tensile stress 1s at the rear surface and rises linearly in

time reaching a maximum value

14
o . Ea “a’ at T =

max l-v 6k (54)

e Yo

For 1 > % , but before the front surface melts, the temperature distribution

is
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T—;E'p—l(t tl) * N (1 2) (55)
b and the stress distribution is

A

k g = 0 ='£n—'—a'-‘[‘1'—(1—x)z] for0<x<l (56)
: rr 06 l-v 2k %3 i

The maximum tensile stress is again found on the rear surface and has value

1.4
Ea "a » .1 1 1
®max = T-v ok tor g < T <31~ 3 (57)
4 \ )
3 Where it is to be recalled that the cyiterion for a thin plate was { < I.
Thus, we see the maximum tensile stress is constant during this second phase.

At 1 = 5% - % » melting bDegins at the front face, Assuming the stress in

the melt to be zero and using the approximate temperature distribution

T=T +§2- (4G '("s) _‘”J_()“: =570} () (58)

The stress is

%(x ~8)(2d - x - 8)

Ea o
9 r = %6 = 1-v I8 [1 - (L -8)* 1, (59)
and on the rear surface,
E&T
- . __Ea &, __ m -V
o %r T %06 = T 2(1-v) (ZIE) T 2(l=v) (1—0) (60)

Using Goodmans first term to evaluate the change in v and o immediately after

melting, we discover that the numerator is reduced as 1 - ClT while the

denominator decreases as 1 - 021’. Hence, when melting begins, the stress
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is reduced to

Eal 4
a

o =[1 «3(r -1 )_|{6k(1 v)

{(61)
max

Since the rear surface stress depends only on v and o, we note that its deriv-

ative is

orear EuT *
i = 20w Ui ~ 1 o)=] (62)
Substituting the differential equation for ;, we find
doreax _ E“Tm 3v [ - (l—o);] (63)
dr ~ 2(1l-v) (1-0)? 3

Since v begins (and remains) negative, and o < 1, the derivative of the stress
remains negative, as can be seen from Goodmans computations of o(t1) and the
[ )
average value of o, which may be bounded above by the average recession rate
with complete removal, o < 41/3,
ave

Thus, within the limits of the assumptions made, if fracture does not

occur before front surface melting begins, it will never occur. To recap

the results for thin slabs (i < 1) in terms of dimensionless time

T = "% (64)
and intensity
Iai
L= (65)
m

The tensile stress on the rear surface is
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2EaT 1
® max T it for 0 < 1 < 3 (66)
2EaT
: BTy Lo oL 1
‘; “wax = 1oy 6 9T 5 < T<31-3 (67)
2EOTm { 1 1
omaxz = 3['—{-31] fort-ﬁ+-3-<<l (68)

If we let the tensile stress required to produce fracture be o and define

. uc(1~v)

c EaT - (69)
m

4 the fracture threshold is i = BGC, and fracture times for two hypothetical
materiais are as shown in Figure 15,

E It should be noted that all of these results are for the boundary con-
E dition considered by Laugh11n3, i.e., no bending deformation allowed, and no

inplane constraint forces allowed to develop. Other boundsry conditions will

produce different stresses, as will be considered in a later section.
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2. Thermal Strxess in Thick Slabs, with Melt Retention.

In the previoua section, the approximate temparature solution
given by Goodman and Shea was used to predict times to fracture
in thin slabs or good conductors where the rear face ig reached
by thermal penetration, and hence, the maximum stress develops,
before frcnt face melting begina. For poor conductors at high
flux, however, the front force will melt before the rear surface
heats. 1In such a case, the maximum stress, and hence, fractures,
may occur after melting begins.

We therefore require a solution analogous to that of Goodman
and Shea, applicable to the thick slab geometry. Let us assume
the one dimensional heating, by absorbed intensity Ia, of a slab
of thickness h. We denote by the subscript m the thermal proper-

f ties of the molten state, and the depth of melting by s.

F On 0 < x < 8 U, 2 Uy )
: K -
E n 9x2 it
- on 8 < x < 8 + §
2
e 20U U 2
Ix2 it
The boundary conditions are
aUm
- kp % = Ig on x =0 3a
E 3'm aul d
s
- kg I + k E;I nL 3¢ °" X s 3b
x=3 X=g
Up = U= 0O on x = s ba
-k au = 0 onx =38 + 8§ 4b
x x=g44
U==T, onx=28+34§ be

where Tm is the temperature at which the phase transformation

of specific heat L occurs, and temperatures are given by
T= Tp + Uy on O < x < @8 5a
T=Ty +U ons < x <8 + § 3b
The initial conditions are the instance of front facz melting,
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0 @ x =0 and t = ty
s =0 @ t= tg

U=~ Tn + (6, - x)2 @ ¢t = tqg 8
2kd,
Ia &
2k = —5‘3;
5 o 2K
I,
where T
G-Gm"ﬁktm'zl%“—q@t-tm 9
a

and the initial distribution is taken as the approximate

solution prior to meeting.
Foilowing Goodman, we choose the temperatures distributions

T
R ARy

to be parabolic, 1i.e.,
U = a(t) + xe(t) + x2f(tr). 10
: Employing the boundary conditiens; 4a~c, we find

SRS

o wrgrm  o.

.
U= —%»[}2 + 820 - 2x (s+0) + x{} 11
[

Y
or T = Tp [(5—1—%———£) - 1] ‘1, 12

which more clearly displays the physical significance of the

temperatures ahead of the melting front in terms of the two
parameters, the melit thickness s, and the penetration depth, 6.

The integral
§+s8 5 2
6 = f Udx = Ty [‘ 2 3| -3 Ty 6 13
8

will prove useful. Physically it is a representation ot the

additional energy required to bring the material within the
penetration depth to melting.
We also choose a parabolic temperature in the molten layer,

Uy = a(t) + xb(t) + x2c(r) 14
From boundary conditiona 3a and 4a,
Up ~ c(t) (x2-a2) - Ei (xw8) 15
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ﬁ The integral

ll 8 I 2

! o, = ]o Updx = ﬁ;é— ~ 2 s3c(n) 16

representas the energy in the melt, above that required by the
phase transformation. At t = Q, 6, = 0.

.

We now require the satisfaction, in the average, nf the heat
conduction equations, (equations 1 and 2) through averaging
over each domain

i,
;
:
;
P

m m
jo Km - dx fo Y dx 17a
and
fs+6 K v dx = fa+6 3y dx 17b
s x s ot |

‘1 Differentiating 13 and 16, we note:

. 8+4§

%% = (8§ + é)ul -8 U + f au dx 18a
] i6+s -] s at
E and
: dam 8 aum
} T = 8 Uy . + IO 3T dx 18b
: Hence
8Um Km Ia den
s m
and
U de . .
-KF; -IE+(6+6>T“ 19b
8

where equation 4b and 3a have been applied.  Substituting 11 into

'19b leaves, as a final form of the averaged energy equation in the
solid, that

™ 9 : ) T 20
' +2k T " At + (6 + 8) - a
6 and § are related through 13, thua
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Combining 15 with 19a
de-
2 kg 8 c(t) = T 22

which may be combined with 16 to giva the a final averaged energy
equation for the melt

Iaal de
1 21 n
2k g n 3 Ky 4t

We may also eliminate the gradients in 3b to obtain the equation
for the energy balance on the melt line as

k, do 2k T .
L L, L = pLs 24a

Ta- o T ;

Bquations 20, 23 and 24 form a system of three first order, non-
linear, coupled equations which must be solved in order to find
the temperature. Through tne following substitutions

T =k (t - t‘)/!.2 25
- CPT,/L 26a
v = kplk 26b
1= I,0/(2k Ty) 26¢
we arrfve at the same dimensionless variables used by Goodman
o= g, & 27
7 e 8/(Ty ) 28
w e (k ky 0g)/(k xpg Ty 2) 29

The differential equations become:

! 8 6uvw

v & 3Iv (14p) - 2pu 1 + 2 20b
w w3 (4 - wl/o?) 23b
&-u{é—"!—+§;—~1--1} 24d
2 v
o
The initial conditions (t= 0) are
ga= 0 ‘30a
w =20 30b
2
Ve . 31 30¢
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It may be demvonstrated that if tv 1is amell, that

o = 6ui(dir)? 31a
v =2 eu2n® b
vox - g o- Aft 4 12u1(11)2 3¢
The actual tenperature distribution in the solid is obtained from .

12 as

& + 8§ - Xy2

3 32

T=T
m

where s and 6 are obtained from 27, 13 and 28, Stresses in the

s0l1id region depend on the mechanical boundary conditions at the

edge of the heated region. If we again assume that bending dis-

E; placements are completely constrained, then
3

; E
) H{CI'QT} i3
. The requirement of no net axial force leads to
3
' a+4
- B 1 ¢ -
] o I-v ‘I-s ! Tdx T} 34
3 s
This is found to be
EaT
- n § .. (88 - x4
o =% {3(2—3) ( ; )4} for x < s+é 35
EaT
m § 1
o~ 7 (33 for 848 < x < ¢ 36

The maximum tensile stress occurs on the rear face (x = &) and is

Eu'rm v
Yrear  ~ 2(1-v) 1I-o 37

valid until - % v < 1-0. The greatest possible stress is

EaT
m

max ~ 3(1-v)
For sma:l time

EaT

- .—l _!'_ - 2 2
Orear = TIoy 37 + 217 - 6u1(1DIZ + 2u(10)?) 18
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The dimensionless time at which melting begins is (from 9, 25

and 26¢c)
T = —17
n 61
and the stress at that time is
EaT
m 1
. % rear 1-v 31 39

We note that for { = 1, the threshold of applicability of these
results for the thick slad, that the maximum stress predicted

is the same as for the thin slab. Kovever, we also note an
important difference. 1In the case of the thin slab, we found
that the stress reduced after the onset of melting. 1In the

thick slab, the stress will continue to increase as wve may note
from Equation 38. Hence, a numerical solution of the governing
aystem of equations is necessary.
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3. Thermal Stress in Melting Thick Slabs
With Instantaneous Melt Removal
Let us now consider the case when the melt is removed as it forms.
Again, two cases must be considered, depending on whether the melting be-
gins before the rear surface chauges temperature (the thick slabs) or after

(thin slabs). For the thick slab, we assume a temperature profile

]
]

=T [ - (5§5)'] for s < x < s+8 (1)

T=20 for s+§ < x (2)

Here s is the instantaneous location of the front surface measured from its
original location. This temperature profile is appropriate only after front

surface melting begins, i.e., for

1 ZkTm
- — 2
\ t >t =R ( I ) (3)
Again, we let
S+s ZTmG
6 = I Udx = - —3— (%)

where U = T - Tm. Requiring the satisfaction of the differential equation

averaged over the instantaneous thickness leads to

s+4
aT 2T _ . . .
- k3 = pCp I sp 94X = & + Tm(c +s) (5)

The melting line coincides with the front surface and an energy balance leads

to
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1 +k13 = pLs (6)
s

The thermal gradient on x = s may be evaluated from

Y N -
ax - s

Application of Equation (&) and the elimination of the gradients leads to

two equations

a Tn

e m

oLs = I + 5 —— (8)

R PR (9
p 2 pm a

In terms of the same dimensionless parameters introduced previously, we find

dv 8 1
dt=4u1+3(1+u); (V)

1}
N
=
pebe
+

do
v v (1)

Again, the initial conditions (t - L = 0) are

a=0 (12a)
v= - '3%- (12b)

In this case, we note the first equation to be uncoupled. The substitution

4

% = C[1 + g(v)] (13)
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15 found to be convenient. With

and the change of independent variable

y = g (L+u) c¥r = T%; uti2q?

where
=t - T
then
dg _ _ :
dy = g(l + g)
with initial condition
1
g(0) = "

This equation may be integrated to yield

u 1 Ly
Y= Tew " 145 * In (g(1+u))

Substitution into Equation (11) then yields

l+u 14,
Jpio = u - (TIE) + ln (Eiiftj)

_This, together with

vi = 2(1+u)
~ 3u(l+g)
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enables the solution to be computed in terms of the parameter g, which is
in turn related to y, and hence t through (19) and (15). Pertinent values
of solution parameters are presented as Table I.

For the same boundary condition as was considered in the previous sec-

tion, i.e., no bending displacement or inplane force, we find

Ea 1 §+s
Oee = Orr = ‘]:; [2:"5‘ Is Tdx - T] (22)

Of particular interest is the maximum tensile stress, which again develops

on the rear face, x = {, where T = O for times over which this thick slab

solution app'ies. Hence,

EaTm -
max = I(1=v) (1=5’ (23)

In this case, a power series solution, valid for small time, shows the stress
at the rear face to increase after front face melting begins, since both v
and ¢ increase in magnitude.

Values of a dimensionless stress

° (1l-v)
max 1 v
nax = ..__E?r;_ =-3 (=) (24)

(=}

may be computed for any i > 1.

It is to be recalled that the temperature distribution becomes invalid

when the the-mal penetration front reaches the rear face, or

8
a+7= 1 (25)
This condition occurs, for any i, at a time y when 1 = ic, as determined from
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.5

4
.35

.3

.25

.2

.15

.10

.07

.05

.03

.02

.0l

.001

.0001

.00001

1.02 x 107’
4.9 x 10710
2.53 x 10”19
2.24 x 10714
3.85 x 10718
1.014 x 107}
2.7 x 107253
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TABLE I. SOLUYION PARAMETERS COMPUTED FOR p=2.

0
.04847
.10653
17724
.26516
«37749
«52648
+73537
1.0569
1.3604
1.6602
2.1333
2,5195
3.1931
5.4768
7.7786
10.081
15.667
20
21.6667
30
39.6667
40
51.667

-vi

166667
.68965
. 71430
« 74074
.76923
.8000
.83333
.86955
.90909
+93460
.95238
.97087
.98039
.9901
-999
.9999
.99999
1.0
1.0
1.0
1.0
1.0
1.0
1.0

0
+0004&15
.0018817
.004848
.010005
.018472
.032192
+05493
.095335
. 137427
.18146
«25415
.31534
.42437
.802182
1.18535
1.56906
2.5
3.2222
3.5
4.8889
6.5
6.5556
g.5

3
1C=1o-§iv

1.0
1.0349
1.0733
1,1160
1.1639
1.2185
1.2822
1.3593
1.4590
1.5394
1.6100
1.7105
1.7859
1.9095
2.302
2.685
3.0690
4.0
4.,7222
5.0
6.3889
8
8.0556
10

[+
C

.000401
00175
00434
.00860
01516
.0251
.0404
.065
0893
.113
.149
.177
222
.348
441
511
+625
.682
.70

« 765
.8125
.813
.85
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the appropriate column in Table I. At that instant, the stress is a maximum

and has value

Q>
i
W

(26)

max

independent of i.~ Thus, the maximum stress obtainable is independent of the
dimensionless intensity, and u as well, but the time required to generate
the stress will be seen to depend on the intensity. The column labled o,
in Table I denotes the fraction of the slab which has melted at the instant
when the stress achieves the maximum value.

Figure 16 presents the time history of the evolution of the rear face
tensile stress, for various values of the dimensionless flux. In Figure 17.
the failure time as a function of intensity is given for materials of various

ultimate strength, Gu, where

o (1-v)
- udT (27)

u EaT
m
One notes what at first would appear to be an anomolous increase in fracture
time with intensity. This arises because higher intensities confine the
penetration depth, thus less thermal force develops. Further increases in

intensity cause more rapid melt thru, thus reducing the load bearing area.
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Figure 16. Stress Time History on Rear Surface of Thick Slab With
Melt Removal.
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V. Summary and Discussion

Two mechanisms have been identified as significant in the generation of
stress in solid elastic materials subjected to high intensity laser radiatioca.
The absorption of some fraction of the incident energy was found to produce
thermal stresses of significant magnitude , but these stresses are character-
istically compressive in the region heated by the beam. In a ductile material,
such stresses may produce failure in a shear mode, but this is less likely to
occur in a brittle material. Rather, it is the significant tensile stresses
found outside of the heated region which are believed to be the more significant
in the generation of failure. Radial conduction of heat was found to diminish,
but not remove, these tensile stresses.

Such thermal stresses are generated by both CW and pulsed lasers. 1In the
latter case, the duration of the pulse and the time between pulses is usually
small compared to the thermal diffusion times; thus a repeated pulse may be
treated as au energy source of the same time averaged intensity. This approx-
imation is especially appropriate in the case of poor conductors, such as
glasses aad ceramics.

In addition to the stresses developed by the absorption of energy by the
solid, the absorption of energy in the medium adjacent to the solid produces
an intense pressure field through the mechanism of LSD or LSC waves. The
mechanical re;ponse of an elastic plate to such loadings was also considered.
This mechanism is inherently of much greater significance in the case of pulsed
lasers because of the higher peak intensities. Consideration of the response
to a pulse showed that the response of a short pulse, acting over a small
portion of the plate, can be accurately determined only if a large number of

the plate modes are considered in the response. While the peak stresses occur
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at the center of the spot, the stresses elsewhere in the plate remain signifi-
cant.

The stresses produced by these two mechanisms are such that superposition
occurs in the case of a repeated pulse laser of high intensity. The thermal
stresses due to the time-averaged intensity increase with time. At later times,
the peak values are to be found at greater distances from the heated area. The
oscillating stresses resulting from the front surface pressures will diminish
in magnitude with distance from the spot center. While oscillating at the '"rep"
frequenc: of the laser, the amplitude of succeeding peaks will be relatively
constaut. Thus, the superposition of the two stress generating mechanisms may
well produce failure after a number of pulses have occurred. Faillures occurring
in the first few pulses may be expected to be due primarily to the oscillating
pressure fie'd and therefore at or near the spot center (barring stress raisers
at the supports). Failures which occur after a number of pulses, on the other
hand, r-y : 2 expected to be due to the development of the tensile thermal stress
outside o. the heated region. Thus, the failure may originate outside of the
heated region.

Other fa: ure mechanisms were given some consideration. Tensile stresses
were found :~ be present in the interior at early times, but the reported
significance of surface flaws as failure crigins is not accounted for by these
stresses. Partial melting under the spot may be of significance. A preliminary
investigation of this possibility was conducted, with the scope limited by the
mechanical boundary condition considered at the edge of the melting region.
Briefly, the failure mechanism deserving some further exploration is the fol-
lowing. As melting occurs, the central portion of the plate becomes thinner.
The compressive forces generated by the surrounding unmelted portion of the

plate will then have a resultant nearer to the melted surface than to the rear,
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thus generating the proper moment to produce rear surface tension. While such

a mechanism is conceivable, it is not likely to be of significance in a ceramic
because of the long times required to produce the necessary melting (or thermal
softening) necessary for the process to occur.

While the possibility of crack (flaw) growth under the oscillating stress
produced by the fluctuating front surface pressure cannot be precluded as a
producer of the observed failures after a number of pulses, thermal stresses
of increasing amplitudes, upon which the fluctuating stresses are superposed,
would seem to be a more probable cause. A carefully designed and properly

instrumented series of experiments would establish the appropriateness of this

conjecture.
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